Application of SENTINEL-2 and LANDSAT 8 to classifying second-level land use classification in the SathingPra peninsular, Songkhla province
Keywords:
SENTINEL-2 satellite, Land Use Classification, SathingPra peninsularAbstract
This research is data application of SENTINEL-2 and LANDSAT 8 to classifying second-level land use classification in Songkhla Lake Basin by remote sensing technology. That the corrective comparison between a second-level land use classification between an Unsupervised Classification by twenty types of land use categorizing was founded the SENTINEL-2 providing accuracy higher than LANDSAT 8 which the accuracy in summer was shown 44.94% and 38.38% respectively and Supervised Classification, by analyzing the reliability of the data compared to the field checkpoint data is 86.18% - 94.62% via the SENTINEL-2 as well. The six types of correct land use by classifying are urban and built-up, perennial plants, rotational farming, deciduous forest, beach forest, and beach in turn. While, a horticulture is not suitable for the land use classification which the least accuracy is 25%. The land use classification in Songkhla Lake Basin contributed agricultural areas have the most land use, urban and built-up, water source areas, forest areas and miscellaneous areas in order which is consistent the land use data of the Land Development Department (LDD).
Downloads
Downloads
Published
How to Cite
Issue
Section
License
บทความทั้งหมดที่ได้รับการคัดเลือกให้นำเสนอผลงานในการประชุมวิชาการวิศวกรรมโยธาแห่งชาติ ครั้งที่ 27 นี้ เป็นลิขสิทธิ์ของ วิศวกรรมสถานแห่งประเทศไทย ในพระบรมราชูปถัมภ์