Linear Dynamic Responses under Nonstationary Forces with Artificial Neural Network Model

Authors

  • ปวริศ โปษยะนันทน์
  • ปฏิภาณ จันทรวิชิต
  • Damang Dy
  • ยศ สมพรเจริญสุข ภาควิชาวิศวกรรมโยธา สถาบันวิศวกรรมศาสตร์และเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยเทคโนโลยีมหานคร จ.กรุงเทพฯ

Keywords:

artificial neural network, linear dynamic responses, non-stationary excitation, universal approximation theorem, stochastic analysis

Abstract

The objective of this paper is to propose the artificial neural network (ANN) model as a surrogate model for determining the dynamic responses of shear frame structure under nonstationary excitation due to the seismic forces. A multi-layer feed-forward neural network is employed particularly in ANN architecture for mapping a large number of generated non-stationary excitations that based on the universal approximation theorem as input to output of stochastic dynamic responses analysis. The proposed idea and computational procedure is illustrated through a time-domain analysis of the simplified 3-DOF linear dynamic system subjected to non-stationary ground motion excitation. From the obtained numerical results shown the potential of the proposed methodology in terms of computational time and accuracy.

Downloads

Download data is not yet available.

Published

2022-09-20

How to Cite

[1]
โปษยะนันทน์ ป., จันทรวิชิต ป., D. Dy, and สมพรเจริญสุข ย., “Linear Dynamic Responses under Nonstationary Forces with Artificial Neural Network Model”, ncce27, vol. 27, pp. STR27–1, Sep. 2022.

Most read articles by the same author(s)