Effects of Openings on Structural Behavior of Masonry Infilled RC Moment Resisting Frames
Keywords:
Infill walls, Finite Element, Openings, Moment resisting frame, Reduction factorsAbstract
In this study, a finite element analysis was carried out to evaluate the in-plane structural behavior of the infilled RC moment-resisting frames. The influence of the opening configuration, size and position, were investigated. In addition, the adjacent column’s shear demand was evaluated as well. A 2D finite element based on a simplified-micro modeling approach was utilized. Statics non-linear analyses of the single-bay single-story infilled frame under horizontal monotonic loading and constant vertical loads were performed. The analytical results showed that a reduction in lateral resistance and stiffness of the infill wall depend on opening configuration, size and position. For the global behavior of the infilled frame, the effects of infill wall can be ignored when the opening ratio increase to approximately 40%-50%. In contrast, a significant influence on local behavior such as column’s shear demand was exhibited. Based on the analytical results, the equations for estimating lateral strength and stiffness reduction due to opening of the infill wall are proposed. An efficient method to investigate the additional shear demand on the adjacent columns due to infill wall-frame interaction is suggested as well.
Downloads
References
[2] Srechai, J. and Lukkunaprasit, P. (2013). An innovative scheme for retrofitting masonry-infilled non-ductile reinforced concrete frames. The IES Journal Part A: Civil & Structural Engineering, 6(4), pp. 277-289.
[3] Mondal, G. and Jain, S.K. (2008). Lateral stiffness of masonry infilled reinforced concrete (RC) frames with central opening. Earthq. Spectra, 24(3), pp. 701-723
[4] Asteris, PG., Giannopoulos, IP., Chrysostomou, CZ. (2012). Modeling of infilled frames with openings. Open Constr Build Technol J, 6(1-M6), pp. 81–91
[5] Al-Chaar, G., Lamb, GE., Issa, MA. (2003). Effect of openings on structural performance of unreinforced masonry infilled frames. ACI, 211: pp. 247–61
[6] Decanini, L.D., Liberatore, L. and Mollaioli, F. (2014). Strength and stiffness reduction factors for infilled frames with openings. Earthq. Eng. Eng. Vib. 13(3), pp. 437-454.
[7] DIANA FEA BV. (2019). DIANA Finite element analysis user manual. Delftechpark 19a, 2628 XJ, Delft, The Netherlands.
[8] Chen, X. and Liu, Y. (2015). Numerical study of in-plane behaviour and strength of concrete masonry infills with openings. Engineering Structures, 82, pp. 226-235.
[9] Durrani AJ., Luo YH. (1994). Seismic retrofit of flat-slab buildings with masonry infills. Proceedings of National Center for Earthquake Engineering. Technical report NCEER-94-0004, 1–8, 1994. National Center for Earthquake Engineering Research, San Francisco, California.
[10] New Zealand Society for Civil Engineering (2006). Assessment and improvement of the structural performance of buildings in earthquakes.
[11] Tasnimi AA, Mohebkhah A. (2011). Investigation on the behavior of brick-infilled steel frames with openings, experimental and analytical approaches. Eng Struct, 33(3), pp. 968–980.
[12] Mohammadi M, Nikfar F. (2013). Strength and stiffness of masonry infilled frames with central openings, based on experimental results. J Struct Eng., 139(6), pp. 974–84.
[13] Su, Q., Cai, G. and Cai, H. (2017). Seismic behaviour of full-scale hollow bricks-infilled RC frames under cyclic loads. Bull Earthquake Eng., 15, pp. 2981-3012.
[14] Lourenco, P.B., (1996). Computational strategies for masonry structures. Doctoral Dissertation, Universidade do Porto, Portugal.
[15] Wararuksajja, W., Srechai, J. and Leeletaviwat, S. (2018). Cyclic Testing of Intermediate RC Moment Frames with Concrete Block Walls. Proceedings of the 7th Asia Conference on Earthquake Engineering, 22-25 November 2018, Bangkok, Thailand. (Paper No. ACEE0170)
[16] Stavridis, A. (2009). Analytical and Experimental Study of Seismic Performance of Reinforced Concrete Frames infilled with Masonry Walls. Ph.D. Thesis, University of California, San Diego.
[17] CEB-FIP (2010), fib Model Code for Concrete Structures 2010, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany.
[18] American Concrete Institute. (2014). Building code requirements for structural concrete (ACI 318-14) and commentary (ACI-318R-14). American Concrete Institute Committee 318, Farmington Hills, Michigan, United States
[19] มยผ. 1301/1302. (2561). มาตรฐานการออกแบบอาคารต้านทานการสั่นสะเทือนของแผ่นดินไหว. กรมโยธาธิการและผังเมือง
[20] วรากร กาญจนภี (2559). สมบัติเชิงกลของผนังอิฐก่อและการประยุกต์ใช้ในการออกแบบโครงสร้างเพื่อต้านทานแผ่นดินไหว. วิทยานิพนธ์ปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์, มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี.
Downloads
Published
How to Cite
Issue
Section
License
บทความทั้งหมดที่ได้รับการคัดเลือกให้นำเสนอผลงานในการประชุมวิชาการวิศวกรรมโยธาแห่งชาติ ครั้งที่ 25 นี้ เป็นลิขสิทธิ์ของ วิศวกรรมสถานแห่งประเทศไทย ในพระบรมราชูปถัมภ์