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Abstract 

Traffic volume forecasting is an important task for the 
motorway planning and management. The performance of these 
forecasts is often degraded by the high uncertainty of sensor 
data, particularly when the data are subject to delay. This study 
aims to develop methods for imputing and forecasting traffic 
volume under high uncertainty and delayed data conditions. The 
objective is to enhance the precision of predictions for traffic 
volume. This study introduced a new data imputation method as 
well as a sequence-based machine learning model, namely, Long 
Short-term Memory (LSTM) model, to handle highly uncertain 
sensor data. The model's performance is evaluated using Root 
Mean Squared Error (RMSE), Mean Absolute Error (MAE) and Mean 
Absolute Percentage Error (MAPE) with a result of 26.67 vehicles, 
17.31 vehicles and 9.26% respectively. Specifically, the model 
demonstrated a high level of sensitivity to delayed data, 17.45% 
of delayed data, meaning that it was able to accurately adjust its 
predictions based on changes in data availability and processing 
times. This suggests that the proposed approach has the 
potential to significantly improve the accuracy and reliability of 
traffic volume forecasting in real-world settings, where delays and 
disruptions are common occurrences. Overall, our study provides 
strong evidence for the efficacy of the proposed approach in the 
face of delayed data and highlights its potential as a valuable 
tool for traffic management and planning in Thailand and 
beyond. 

Keywords: Traffic volume forecasting model, Long Short-term 
Memory, data imputation. 

1. Introduction 

Traffic volume forecasting is an essential task for 
transportation planning and management. Accurate predictions 
of traffic volume help authorities to make informed decisions on 
road network planning, traffic control, and infrastructure 
investments. However, forecasting traffic volume is a challenging 
task due to the high degree of uncertainty associated with sensor 
data. Inaccurate sensor data can lead to incorrect predictions and 
have significant consequences for transportation planning. 

The main challenge in traffic volume forecasting is dealing 
with high sensor data uncertainty. Traffic sensors are often 
subject to various factors such as environmental conditions, 
technical faults, and human errors that can affect their accuracy. 
The aim of this study is to improve the accuracy of traffic volume 
predictions in the context of a dataset that exhibits a high 
proportion of missing data, with roughly 80% of the values being 
absent.  

To address the issue of high uncertainty and missing values 
in traffic data, the kNN (k-Nearest Neighbors) method is a popular 
traditional method for imputation. Its relative simplicity and 
potential for producing accurate results when implemented 
correctly make it a preferred choice. An example of this method 
can be seen in a comparison study of k-Nearest Neighbors (kNN) 
with Nearest History (NH) and Bootstrap-based Expectation, which 
demonstrated that kNN outperformed the other methods when 
dealing with missing data ranging from 0.1% to 50%[1]. Another 
example of kNN, this research paper evaluates and compares the 
effectiveness of three missing data imputation methods for traffic 
flow prediction. The k-nearest neighbor (kNN) method, singular 
value decomposition (SVD), and autoregressive integrated moving 
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average (ARIMA) models are evaluated using a real-world traffic 
flow dataset with missing values ranging from 10% to 50%. The 
study analyzes the performance of each method in terms of 
imputing missing values and predicting traffic flow. The results 
show that the kNN method outperforms the SVD and ARIMA 
methods in terms of accuracy. Moreover, the study finds that the 
kNN method's performance is influenced by the number of 
nearest neighbors used, and selecting the optimal number of 
neighbors can further improve the accuracy of the imputation 
results [2]. However, kNN method may not be optimal for 
imputing data with missing values exceeding 80%. The 
computational complexity of kNN imputation is a major 
challenge, as it requires calculating distances between the 
missing data point and all other data points in the dataset. This 
process can be computationally expensive, particularly for large 
datasets and real-time applications where speed is critical. 
Furthermore, the availability of nearest neighbors in real-time is 
another challenge, as kNN imputation relies on the values of the 
k nearest neighbors to impute missing data. In a real-time 
scenario, the nearest neighbors may not be available 
immediately, and there may be delays in calculating the imputed 
value. 

To address this problem, firstly, a waiting time of 30-minute 
approach is proposed to reduce the limitation of high missing 
data from 80% to 10%. Then, the proposed approach aims to 
leverage historical traffic data and employ Long Short-Term 
Memory (LSTM) algorithms for missing data imputation and traffic 
volume prediction [3]-[10]. LSTM (Long Short-Term Memory) is a 
type of recurrent neural network that is capable of modeling 
sequential data, making it a powerful tool for time-series 
prediction and forecasting tasks. Unlike kNN (k-Nearest Neighbors) 
imputation, which is a simple imputation method that relies on 
the values of the nearest neighbors to fill in missing data, LSTM 
can learn the patterns and relationships within the data and use 
them to impute missing values more accurately. One of the main 
advantages of LSTM over kNN imputation is its ability to handle 
missing data patterns that are not random. In contrast, kNN 
imputation assumes that the missing data is missing at random 
(MAR), which may not always be the case in real-world datasets. 
LSTM can learn the underlying patterns in the data and use them 
to impute missing values, even when the missing data patterns 
are not MAR. Another advantage of LSTM is its ability to handle 
time-series data and model temporal dependencies. This makes 

it particularly useful for imputing missing values in time-series 
datasets, where the missing data points are often correlated with 
nearby data points in time. kNN imputation does not take into 
account the temporal relationships between the data points, and 
as a result, may not be able to accurately impute missing values 
in time-series datasets. 

LSTM (Long Short-Term Memory) networks can be used to 
deal with missing input data. One way to do this is by using a 
technique called "masked input," where missing values are 
marked with a special value, and the LSTM learns to ignore those 
values during training and prediction. Another approach is to use 
an LSTM-based imputation model to fill in the missing values 
before feeding the data into the main LSTM model. LSTM 
algorithms are well-suited for time-series data, making them a 
powerful tool for forecasting traffic volume. This approach has 
the potential to be cost-effective and efficient, while still 
producing reliable and accurate traffic volume forecasts. 

2. Related Works 

Long Short-Term Memory (LSTM) is a type of recurrent neural 
network (RNN) architecture that is widely used for time series 
analysis and sequential data processing. The LSTM algorithm can 
effectively capture and comprehend the patterns and 
relationships present in data, allowing for accurate imputation of 
missing values. This approach has been shown to outperform 
other methods such as mean imputation, linear interpolation and 
k-Nearest Neighbors (kNN).  

Smoothed LSTM-AE was used as a method for imputing 
missing values in multiple time-series data using a combination 
of long short-term memory (LSTM) and autoencoder (AE) models. 
The approach was designed to capture temporal dependencies 
and spatial correlations within the data and to handle missing 
data that occurs in long consecutive intervals. The paper 
provided a comprehensive experimental evaluation of the 
proposed method, comparing it to several state-of-the-art 
methods on several benchmark datasets. The results 
demonstrated that the proposed approach outperformed the 
compared methods, including k-nearest neighbors (kNN) and 
other deep learning-based methods, in terms of imputation 
accuracy and ability to handle long consecutive missing data [3]. 

Long Short-Term Memory (LSTM) neural networks were 
utilized for traffic flow prediction with missing data. The 
methodology involved three main steps, namely data 
preprocessing, LSTM-based prediction model construction, and 
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model evaluation. In the first step, the missing values in the data 
were imputed using a k-nearest neighbor (kNN) algorithm, 
followed by normalization using a min-max scaler. In the second 
step, the LSTM-based prediction model was constructed, 
consisting of an LSTM layer and a dense layer. The model was 
trained using the mean squared error (MSE) loss function and the 
Adam optimization algorithm. Finally, the model's performance 
was evaluated using various metrics such as root mean squared 
error (RMSE), mean absolute error (MAE), and mean absolute 
percentage error (MAPE). The paper compared the proposed 
LSTM-based approach's performance with a baseline 
autoregressive integrated moving average (ARIMA) model and a 
feedforward neural network (FNN) model. The results showed 
that the LSTM-based model outperformed the other two models 
in terms of prediction accuracy, especially in dealing with missing 
data. Based on the findings, the authors concluded that the 
proposed LSTM-based approach was effective in traffic flow 
prediction with missing data and could be used for traffic 
management and control [4]. 

The combination of bidirectional and unidirectional Long 
Short-Term Memory (LSTM) networks in a stacked configuration 
was used to model temporal dependencies in the traffic flow 
data. The model was trained on a large dataset of traffic flow 
data and tested on various scenarios with missing data. The 
performance of the proposed approach was compared with 
various benchmark methods, such as Support Vector Regression 
(SVR) and k-Nearest Neighbors (kNN), and it was shown that the 
proposed approach outperformed the benchmark methods, 
especially in scenarios with high percentages of missing data.The 
results suggest that LSTM is better than kNN for predicting 
network-wide traffic state with missing values, using the 
combination of bidirectional and unidirectional LSTM networks in 
a stacked configuration to capture temporal dependencies in the 
data [5]. 

A Type-2 fuzzy LSTM (T2F-LSTM) neural network model was 
used for long-term traffic volume prediction. T2F Sets (T2FSs) 
were utilized to provide greater flexibility in describing 
membership information and processing data with higher 
uncertainty, compared to traditional fuzzy systems. The model 
introduced interval T2FSs to extract probability distributions and 
spatial-temporal characteristics of traffic volume. The closure of 
support parameters obtained from the interval T2FSs was then 
used to update and converge the weights of the input gate in the 

LSTM neural network to regions with a larger slope of the sigmoid 
function. This resulted in faster convergence and increased 
network interpretability, achieved through better control of the 
information flow using motivational factors constructed from the 
parameters. Overall, the proposed T2F-LSTM model offered 
improved accuracy and interpretability for long-term traffic 
volume prediction [6]. 

The KNN-LSTM model, which combines k-nearest neighbor 
(KNN) and long short-term memory network (LSTM) techniques is 
used as a spatiotemporal traffic flow prediction method that 
effectively improves prediction accuracy. KNN is used to identify 
neighboring stations that are closely related to the test station, 
capturing spatial features of traffic flow. LSTM is then used to 
mine the temporal variability of traffic flow, with a two-layer 
LSTM network applied to predict traffic flow in the selected 
stations. By combining these two techniques, the KNN-LSTM 
model is shown to achieve high prediction accuracy, enabling 
more effective traffic guidance and management [7]. 

The long short-term memory (LSTM) recurrent neural 
network was used to analyze the effects of various input settings 
on the LSTM prediction performances. Predicting traffic based 
solely on flow data may not yield optimal results. Therefore, in 
this study, a combination of flow, speed, and occupancy data 
from the same detector station was used as inputs to improve 
prediction performance. The results showed that the inclusion of 
occupancy/speed information helped to enhance the 
performance of the model overall [8].  

A long short-term memory neural network (LSTM) was used 
as a method for predicting network traffic volume. The method 
used observed traffic volume changes, time window indices, and 
a seasonality factor as input features to predict future traffic 
volume. Results from experiments with real datasets showed 
that this method outperformed other time series forecasting 
methods for predicting upcoming network traffic [9]. 

Recurrent neural networks (RNNs) were used as a model to 
develop robust, multi-step-ahead forecasting models. The 
models utilized simple RNN, gated recurrent unit (GRU), and long 
short-term memory (LSTM) units, and two approaches were used 
to address the missing value issue: masking and imputation, in 
conjunction with the RNN models. The datasets used in this study 
were characterized by long-term temporal dependencies and 
missing values, which posed challenges for traditional time-series 
forecasting models. Seasonal variations occurred in all roadways, 
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which could be weekly, monthly, or yearly. Based on the analysis, 
it was concluded that the LSTM model outperformed the simple 
RNN and GRU models in predicting future traffic volume. 
Additionally, the study found that imputation was a more 
effective approach than masking for handling missing values in 
the dataset [10].  

3. Data 

3.1 Study corridor 
The data was collected from microwave radar and image 

processing data installed along 25 km. of the motorway number 
7 which sees approximately 80,000 vehicles passing through each 
day. The data were collected between KM. 0+000 and KM. 
25+000 (Ladkrabang to Srinagarindra direction).

 
Fig. 1 The study corridor from Ladkrabang to  

Srinagarindra, Bangkok. 

The 25 km motorway corridor was divided into 8 sections 
based on the interchanges, resulting in the midblock segments, 
2-5 km in length. However, in this study, Segment W03, KM 9+700 
to KM 9+900, westbound, was selected. 

 
Fig. 2 Sensor locations along the study corridor 

3.2 Data collection 
Traffic volume was collected from 14 sensors, which were 

composed of 2 mainline sensors and 12 ramp sensors. The traffic 
volume data was collected on 112 days between November 
2022 to February 2023. Long holidays were intentionally included 

in the study period to train the model under various traffic 
conditions. 

3.2.1 Image processing camera 
An image processing camera is located on the mainline at KM 

3+000 and is used to capture images and videos of traffic flow 
on the motorway. The camera is equipped with the software that 
can detect and measure traffic volume, as well as monitor traffic 
conditions such as congestion and accidents.  

 
Fig. 3  The installation of an image processing camera  

3.2.2 Microwave sensor 
There is one microwave sensor located on the mainline at 

KM 18+000 and other 12 sensors located at the on-ramps and 
off-ramps. 

 
Fig. 4 The example of microwave sensor installation 

3.3 Data cleaning and processing 
Based on the traffic volume dataset obtained from the 

motorway number 7, there was supposed to be a total of 581,040 
records. However, there are nearly 467,848 records missing from 
the dataset (80%). Therefore, data cleaning and pre-processing 
are important steps before using the data for the model 
development.  

3.3.1 Traffic volume data cleaning 
Historical data were utilized to establish a threshold for 

detecting and removing outliers in the dataset where a threshold 
was established for each hour, and the data were cleaned 
accordingly within that hour. Any traffic volume falling below the 
lowerbound (5th percentile) or exceeding the upperbound (95th 
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percentile) was identified as an outlier and replaced with a NaN 
value before being used in the data imputation process. 

To clean the outliers of the current week, historical data from 
the preceding 12 weeks were employed. For instance, data from 
week 44 (the first week of the dataset) utilized a threshold 
derived from the data between weeks 32 and 43.     

3.3.2 Traffic volume data imputation 
Due to issues with data delay and missing data, some NaN 

values were present in the dataset. To prepare the data for use 
in the model, these values were corrected by averaging the 
values of six timeslots. If the number of NaN values in the 6 
timeslots exceeded 4, the result was set to NaN; otherwise, the 
average of the available values was computed, ignoring the NaN 
values. 

3.3.3 Relevant data inputs 
The model inputs were not limited to traffic volume from 

sensors alone. Other important variables, such as holidays, time 
of day, day of the week, and the indicator for unfixable data, 
were also considered.  

3.3.4 Dependent variables 
According to the location of our model (W03), the traffic 

volume (veh/5 min) was calculated using the image processing 
and the nearby on-off ramp sensors, using the following 
calculation. 

VOLW03 = MAIN10101 – EXT70102 – EXT70103 + ENT70104 + ENT70207 

Where MAIN10101 is number of the image processing and 
EXT70102, EXT70103, ENT70104 and ENT70207 are the number of sensors 
nearby as shown in Fig. 2 

4. Model development 

4.1 LSTM architecture for traffic volume forecasting  

 
Fig. 5 The LSTM architecture for traffic volume forecasting [11] 

From Fig. 5,  denotes time-series data,  denotes 

hidden vector,  denotes cell state,  and tanh denotes 

activation functions,  denotes forget gate,  denotes 

input gate and  denotes output gate. 
Let the input time-series data in the sliding window be 

. The hidden vector sequence 

is then calculated. Next, an output 

sequence is given by the LSTM 

network sequence. Eq. (1) and Eq. (2) are then iterated: 
 

  (1) 

 
.
 (2) 

Here is a weight matrix (e.g.,  is the input-hidden 

weight matrix), and  is a bias vector.  is a hidden 
layer function and is computed by iterating Eq. (3)–(8). 

Gates: 
  (3) 

  (4) 

  (5)  

Input transform: 
  (6) 

 Memory update: 
  (7) 

  (8) 

 Here  is a sigmoid function;  and 

 are defined in Eq. (1) and Eq. (2), respectively. 

is a forget gate, is an input gate, is an output gate, and 

 is a cell update gate. 

         (9) 

  
        (10) 

Eq. (1) and Eq. (2) together define the activate function. 
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4.2 Training and test datasets 
4.2.1 Model data inputs 
During the training process, the input layer used 75% of the 

overall data as the training dataset, while the remaining 25% was 
utilized for testing. 

• Training dataset (2022/10/31 - 2023/01/22) 

• Test dataset (2023/01/23 - 2023/02/19) 

To address the issue of non-imputed data causing NaN values 
in dependent variables, Y, records with NaN values in Y were 
eliminated. This was necessary because the dataset contained 
NaN variables that were used in the calculation of the Y variable. 

4.2.2 Cross validation 
Cross-validation for time series data is a technique used to 

evaluate the performance of a model when dealing with 
sequential data. In contrast to traditional cross-validation 
methods, where data is randomly divided into training and testing 
sets, time series cross-validation involves creating multiple 
training and testing sets by using a sliding window approach. 

4.3 Performance evaluation metrics 
Three metrics widely used to evaluate the prediction 

performance of the models were deployed [12]: 
4.3.1 Root Mean Squared Error (RMSE):  
Root Mean Squared Error (RMSE) is a statistical metric that 

measures the average magnitude of the differences between 
predicted and actual values in a dataset. It is often used in 
regression analysis and machine learning to evaluate the 
accuracy of models. 

RMSE calculates the square root of the average of the 
squared differences between the predicted and actual values. A 
lower RMSE value indicates a better fit of the model to the data. 
The calculation of RMSE is as shown below: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2
𝑁

𝑖=1

 

4.3.2 Mean Absolute Error (MAE): 
MAE (Mean Absolute Error) is a statistical metric that 

measures the average absolute difference between predicted 
and actual values in a dataset. It is often used in machine learning 
and statistical modeling to evaluate the accuracy of regression 

models, and it is also a useful metric for assessing the 
performance of forecasting models. 

MAE calculates the absolute difference between the 
predicted and actual values, and then takes the average of these 
absolute differences to provide an overall measure of error. A 
lower MAE value indicates a better fit of the model to the data. 
The calculation of MAE is as shown below: 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖 − 𝑓(𝑥𝑖)|

𝑁

𝑖=1

 

4.3.3 Mean absolute percentage error (MAPE): 
Mean absolute percentage error (MAPE) is a statistical metric 

that measures the average absolute percentage difference 
between predicted and actual values in a dataset. It is often used 
in forecasting models and is particularly useful when dealing with 
data of varying magnitudes or scales. 

MAPE calculates the absolute percentage difference 
between the predicted and actual values, and then takes the 
average of these absolute percentage differences to provide an 
overall measure of error. A lower MAPE value indicates a better 
fit of the model to the data. The calculation of MAPE is as shown 
below: 

𝑀𝐴𝑃𝐸 =
100%

𝑁
∑

|𝑦𝑖 − 𝑓(𝑥𝑖)|

𝑦𝑖

𝑁

𝑖=1

 

where 𝑦𝑖 and  𝑓(𝑥𝑖)  represent the real traffic volume 
information and predicted traffic volume. N is the number of the 
total real traffic volume information.  

4.4 Model Hyperparameter Selection 
The LSTM model's hyperparameters primarily consist of the 

following: the learning rate, batch size, training epochs, and 
number of units. During the experiment, manual adjustments 
were made to set the following hyperparameters: learning rate 
to 0.001, batch size to 16, number of units to double the shape 
of the training data, and training epochs to the number of epochs 
that resulted in the lowest MAE during cross-validation.  

5. Results 

Based on the data, approximately 80% of the data are 
missing, rendering it impractical to execute the model. To 
address this issue, a waiting time of 30 minutes before running 
the model is implemented, in addition to utilizing traffic volume 
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imputation to correct the data. The data preparation process is 
shown in Fig. 6. 

 
Fig. 6 The overview of traffic volume preparation 

As a result, the missing data is reduced to around 10%, and 
the model's performance improves, achieving the following 
results. 

Table 1 The traffic prediction results.  
Model MAPE (%) MAE (Veh) RMSE (Veh) 

W03 9.26 17.31 26.67 

 

 
Fig. 7 The visualization results for traffic prediction of 5 minutes 

6. Sensitivity Analysis 

In this section, the sensitivity of the delayed data on the 
model performance was analyzed. Four delayed data scenarios 
were simulated including 15%, 25%, 35%, and 45% of delayed 

data. The baseline is 10% delayed data and random sampling 
method was used to produce various datasets. 

The data were processed by introducing random missing 
data, with a distribution of 80% of the data being correctable via 
traffic imputation, and the remaining 20% of the data being 
unfixable. The randomization process was kept consistent by 
utilizing a seed number of 1.  

Fig. 8 displays the results of the four scenarios with delayed 
data ranging from 15% to 45%. The findings indicate that when 
the percentage of delayed data is 17.45%, the MAPE is 20%. As 
the percentage of delayed data increases to 25%, the MAPE also 
increases to around 30%. When the delay reaches 50% in the 
third scenario, the MAPE deteriorates further. Finally, in the 
fourth scenario with 45% delayed data, the model's error rate is 
almost 100%. 

 

Fig. 9 Impact of delayed data sensitivity on model performance  

7. Discussion and Conclusion  

7.1 Model performances 
The model's performance was assessed using three metrics: 

MAPE (Mean Absolute Percentage Error) with a result of 9.26%; 
MAE (Mean Absolute Error) with a result of 17.31 vehicles, and 
RMSE (Root Mean Square Error) with a result of 26.67 vehicles. 
The results indicate that the application of traffic imputation and 
a waiting period of 30 minutes were successful in reducing the 
missing data from 80% to 10%. These findings suggest that this 
approach is highly effective in enhancing the model's 
performance. However, the implementation of a waiting time of 
30 minutes may potentially compromise the model's 
responsiveness to real-time traffic. For example, if data are 
gathered on a day when traffic conditions rapidly change, the 
model will solely rely on information from the preceding 30 
minutes, leading to inaccurate predictions. 

7.2 Sensitivity to data uncertainty 
Based on the results illustrated in Fig. 9. It can be concluded 

that the model's performance is not significantly affected by 
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delays, as it maintains a high level of accuracy even when faced 
with a delay impact of 17.45%. This suggests that the model can 
reliably and accurately process data even in situations where 
there may be delays in information transmission or processing. 
These findings have important implications for real-world 
applications, where delays can be a common occurrence, and 
highlight the potential of this model to be used in a range of 
contexts where reliability and accuracy are crucial. 

7.3 Future research 
1) According to the application of a waiting time of 30 

minutes, it represents a provisional measure. As a more 
sustainable solution, the issue could be addressed at the sensor 
level, or an examination could be made into whether forecasting 
every half hour is the most feasible option. Nevertheless, it is 
imperative to consider that forecasting too frequently may not 
be optimal due to potential limitations in the frequency of data 
updates. 

2) In terms of model advancement, the current mean 
absolute percentage error (MAPE) value of 9.26% results from 
training the data during high holiday seasons. Nonetheless, this 
approach may have an impact on the accuracy of traffic volume 
predictions, as traffic patterns vary between weekdays and 
holidays. Presently, the model performs well for weekday 
predictions, but tends to underperform during high holiday 
seasons. To address this issue, a potential solution would be to 
train the model with data spanning a broader time range, which 
would enable the model to acquire more comprehensive 
knowledge. Furthermore, the significance of each sensor may 
have varying effects on the model's performance, with mainline 
sensors having more weight than other on-off ramp sensors.  

3) During the sensitivity test where delayed data were 
introduced randomly, it was observed that certain sensors, such 
as mainline and on-off ramp sensors, had different levels of 
significance. To enhance accuracy, multiple runs should be 
conducted to obtain an average result. Moreover, in real-world 
settings where delays and disruptions are common occurrences, 
it may be necessary to consider alternative strategies for 
mitigating the impact of delayed data on the model's 
performance. One such strategy could be to develop more 
robust data imputation techniques that can handle a larger 
percentage of unfixable missing data. Another strategy could be 
to combine the proposed approach with other forecasting 
models that are less sensitive to delayed data.   
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