
การประชุมวิชาการวิศวกรรมโยธาแห่งชาติ ครั้งท่ี 27 The 27th National Convention on Civil Engineering 
วันท่ี 24-26 สิงหาคม 2565 จ.เชียงราย August 24-26, 2022, Chiang Rai, THAILAND 

 

GTE46-1 

Implementation of Artificial Neural Network for Prediction of Pavement Structure               
Strains at Critical Locations 

 
Nuttariga Limtongsomjai1 Teeranai Chaiwanna1 Borin Wipromchai1 and Warat Kongkitkul1,* 

 
1 Department of Civil Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, THAILAND 

*Corresponding author; E-mail address: warat.kon@kmutt.ac.th 

 
 

Abstract 

Falling Weight Deflectometer (FWD) test is commonly used 
to evaluate the conditions of a pavement structure. The surface 
deflections measured by a FWD test are normally used in back-
calculation analysis to determine the elastic Young’s modulus 
of the pavement structure materials, which later on is inputted 
into a forward calculation, usually by a Linear Elastic Analysis 
(LEA), to determine the strains mobilised at the critical locations 
(t,ac and c,sg) in the pavement structure for evaluation of the 
remaining life. It is of interest to develop a tool for predicting 
the values of t,ac and c,sg directly from the FWD deflections 
while bypassing the above-mentioned back- and forward 
calculations, which are highly time-consuming. In this research, 
artificial neural network (ANN), which is a function built-in 
MATLAB2020 program, was used as the tool for such a 
prediction. There are three types of pavement structures 
investigated, which are: i) cement-modified crushed rock base 
pavement structure; ii) combined-surface pavement structure; 
and iii) thin-surface pavement structure. A database consisting of 
the strains at the critical locations and the FWD deflections for 
each pavement structure type, which were obtained by data 
generating with LEA in the previous research, were used. The 
FWD deflections were transformed to various deflection basin 
parameters (DBPs), and then used to train ANN to correlate with 
the strains at the critical locations. By comparing the strains 
predicted by ANN with the ones from LEA as the input, it is found 
that, in general, the maximum error is around only 3%. In 
addition, the results predicted by ANN in the present study are 
substantially more accurate than the ones predicted by a non-
linear regression method with statistical equations of the 
previous study. Hence, the developed ANN can be used to 

analyse the FWD deflections to determine the critical location’s 
strains for evaluating the conditions of a pavement structure. 

Keywords:  Artificial Neural Network, Deflectometer, Deflection 
Basin Parameter, Falling Weight, Pavement Strains 

1. Introduction 

Artificial neural network (ANN) is a system that adapts from 
learning of neuron in human brain. It can learn from data by 
training to recognize patterns. Falling Weight Reflectometer (FWD) 
is a nondestructive test device used for evaluating pavement 
structure responses and assessing the structural performance of 
a pavement structure. After performing a FWD test, the surface 
deflections are known and inputted into a back-calculation 
analysis to determine the elastic moduli of pavement structure 
layers. The serviceability of a pavement structure is then 
estimated and the required overlay thickness of asphalt layer for 
rehabilitation is determined by using a back- calculation method 
(e.g., ELMOD 4.0). To establish the strains mobilized in a 
pavement structure, the forward calculation method with a 
software (EVERSTRESS 5.0) is required. Therefore, it becomes 
necessary to use ANN for predicting the pavement structure 
strains as shown in Fig. 1. 

 
Fig. 1 Application of ANN to determine pavement strains 
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From the above, it can be seen that the determination of the 
pavement structure strains from a FWD test requires an expert to 
calculate, and it takes a long time to calculate due to there are 
many processes. The study of Wantanagun [1] showed that DBPs 
can be used to determine pavement structure strains. However, 
the predicting accuracy proposed by Wantanagun [1] was not 
accurate enough to predict pavement structure strains precisely. 
Thus, this study attempts on application of ANN to improve such 
a predicting accuracy. 

In view of the above, this study was performed with the 
objectives as follows. To develop an ANN from analyzing results 
of linear elastic analysis (LEA) from the previous research for 
predicting strains of a pavement structure. To determine the 
most influence set of DBPs for each type of pavement structure. 
And to use the developed ANN and the most influence set of 
DBPs for prediction and comparison of pavement structure strains 
from Wantanagun [1]. 

There are scope and limitation of the present study as listed 
below. Analyses were performed with three pavement structure 
type which are: i) cement modified crushed rock base pavement, 
ii) combined surface pavement structure, and iii) thin surface 
pavement structure. The Pearson’s correlation coefficient (r) was 
used to weight DBPs from seven DBPs to three DBPs. Comparisons 
were performed between the results developed by ANN and 
results from Wantanagun [1] only. The ANN used in this study was 
developed by MATLAB2020. The LEA results were from 
Wantanagun [1]. The influence of temperature was not studied 
in this study. And, in case of weighting DBPs by the same 
Pearson’s correlation coefficient (r), the mean square error (MSE) 
was used to weight DBPs instead. 

2. Background of the Study 

2.1 Typical Pavement in Thailand 

In Thailand, the flexible pavement is the most favorite one 
due to the economic capital cost. Flexible pavement consists of 
a thin asphalt layer, which is supported by the underlying base, 
subbase materials and subgrade as shown in Fig. 2. 

2.2 Pavement Distress 

The horizontal tensile strain at the bottom of the asphalt 
layer and the compressive strain at the top of subgrade layer are 
used to predict fatigue cracking and rutting failure, respectively 
[2]. 

2.2.1 Fatigue Cracking 
Fatigue cracking is a cracking from the horizontal tensile strain 

at bottom of asphalt concrete layer as shown in Fig. 3. This strain 
can be used to predict the lifetime of a pavement by allowable 
number of load repetition (Nf) as shown in Eq. (1). 

2 2
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2.2.2 Rutting 
Rutting is a failure from vertical compressive strain at the top 

of base layer or subgrade layer as shown in Fig. 4. This strain can 
be used to predict lifetime of a pavement by allowable number 
of load repetition (Nf) as shown in Eq. (2).  
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Fig. 2 A typical flexible pavement 
 

2.3 Falling Weight Deflectometer (FWD) 

FWD is a nondestructive test device that is generally used 
for evaluating pavement layer moduli and assesses the 
structural condition of pavements as shown in Fig. 5. Normally, 
parameters from a FWD test were used to calculate pavement 
structure strains by back calculation method by ELMOD4.0 for 
determining elastic modulus (E), and then these E values are 
used in forward calculation by EVERSTRESS5.0 to determine 
strain. 

2.4 Deflection basin parameters (DBPs). 

DBPs are the parameters developed from the measured 
surface deflections (D) at various distances. DBPs which are used 
in this study consist of: 
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1. Surface Curvature Index (SCI), defined as: SCI = D0-D300 

[3-4] 
2. Base damage index (BDI), defined as: BDI = D12–D24 [4] 
3. Maximum deflection (D0) [5] 
4. Area defined as: Area = 6(D0+2D12+2D24 +D36)/D0 [6] 
5. Shape factors 1 (F1) defined as: F1= (D0 - D24)/D12 [6] 
6. Shape factors 2 (F2) defined as: F2= (D12 - D36)/D24 [6] 

 

 
Fig. 3 Example of fatigue cracking 

 
 Fig. 4 Example of rutting 

 

2.5 Artificial neural network (ANN) 

ANN is a machine learning inspired by computer programs 
and designed to simulate the way in which the human brain 
processes information. ANNs gather their knowledge by detecting 
the patterns and relationships in data and learn (or are trained) 
through experience. 

2.5.1 Forward propagation learning in ANN 
Receiving input layer, then collecting weight for stimulating 

through hidden layer as shown in Fig. 6. 

2.5.1 Forward propagation learning in ANN 
Improving ANN from output data to input data by adjusting 

weight in each instance by error, and then the data will be 
improved to reduce error in ANN as shown in Fig. 6. 

 
 

Fig. 5 FWD test with the measurements of surface 
deflections at various distance from the centre  

 

 
Fig. 6 Supervised network with forward-propagation and back  
   propagation learning [7] 

3. Methodology 

The processes to predict the strains start from separating the 
pavement structure into three types, which are: i) thin surface 
pavement structure; ii) combined surface pavement structure; 
and iii) cement modified base pavement structure. There are two  
phases, which are: i) selection of relevant DPBs; and ii) verification 
of selected DBPs as shown in Fig. 7. 

3.1 Architecture of ANN 

Architecture of ANN consists of numbers of hidden layer and 
numbers of neuron as shown in Fig. 8 and 9 for seven DBPs and 
three DBPs, respectively. 

3.2 Fitting network 

Fitting network is the process to determine suitable network 
for ANN before using ANN to weight DBPs and predict pavement 
structure strains. There are three components as follows. 

 
 

Impact Load 

D0 D200 D300 D600 D900 D1200 D1500 D1800

D0

D1800D1500D1200D900D600D300D200

300 mm 
Diameter Plate

200 mm
100 
mm 300 mm 300 mm 300 mm 300 mm

Sensors

Sensor Spacing

D450

150 
mm

150 
mm

D450



การประชุมวิชาการวิศวกรรมโยธาแห่งชาติ ครั้งท่ี 27 The 27th National Convention on Civil Engineering 
วันท่ี 24-26 สิงหาคม 2565 จ.เชียงราย August 24-26, 2022, Chiang Rai, THAILAND 

 

GTE46-4 

3.2.1 Function 
Functions of network are used for fitting the network. 

Normally, Levenberg-Marquardt and Bayesian regularization were 
used to determine the data used in ANN as shown in Table 1. 

3.2.2 Number of hidden layers 
Hidden layers in ANN are used to increase performance of 

network. 
3.2.3 Number of neurons 
Number of neurons were used to train ANN and develop ANN, 

like the number of workers in the field site. Summary of the 
architecture of ANN in this study is shown in Table 2. 

 

 
Fig. 7 Methodology used in this study 

 

 
Fig. 8 Architecture of ANN with 7 DBPs 

 

 
Fig. 9 Architecture of ANN with 3 DBPs 

 

Table 1 Functions of network of ANN 

Function Levenberg-Marquardt  
Bayesian regularization 

backpropagation  

Code Trainlm Trainbr 

Time shorter longer 

Sampling Training, Validation, Testing Training, Testing 

Performance 
Mean Squared Error (MSE) 
and Regression values (R) 

Mean Squared Error (MSE) 
and Regression values (R) 

 
Table 2 Summary of architecture of ANN 

Type of pavement Type of 
strain 

Function No. Hidden 
layer 

No. Neuron 

Cement Modified 
Horizontal Trainbr 2 30,30 

Vertical Trainbr 2 20,20 

Combined surface 
Horizontal Trainbr 2 21,21 

Vertical Trainbr 2 22,22 

Thin surface 
Horizontal Trainbr 2 11,11 

Vertical Trainbr 2 8,8 

All type 
Horizontal  Trainbr 2 14,14 

Vertical  Trainlm 2 7,7 

 

After selecting the architectures of ANN for used to train DBPs, 
trend of regression correlation will show the state of ANN as 
under fitting, good fitting, or over fitting, as shown in Figs. 10, 11, 

and 12, respectively. Under fitting state is the state of ANN with 
low predictive accuracy. Good fitting state is the state of ANN 
with suitable prediction accuracy. Over fitting state is the state of 
ANN with more predictive accuracy than necessary. 

 

 
Fig. 10 Under fitting state 
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Fig. 11 Good fitting state 

 

 
Fig. 12 Over fitting state 

 

 
Fig. 13 Example of weighting DBPs for t,ac cement modified 
 crushed rock base 

3.3 Weighting DBPs 

Weighting is the process to determine the influence of each 
DBP in each type of pavement structure. Fig. 13 shows an 
example and details of weighting DBPs for horizontal tensile 
strain at bottom of asphalt concrete for cement modified 
crushed rock base from seven DBPs to three DBPs. For an 
example of weighting, decreasing seven DBPs to six DBPs, F1 
made ANN performance the best compared with excluding other 
DBPs. Then, weight six DBPs to five DBPs and run the processes 

again until obtain the best performance of three DBPs. After that, 
R-square and RMSE of ANN with seven DBPs, three DBPs will be 
compared together. 

4. Results and discussion 

Results and discussion consist of summary of the most 
relevant three DBPs of each type of pavement, comparison of R-
square and RMSE of ANN with seven DBPs and three DBPs, 
comparison of R-square for prediction of ANN with seven DBPs, 
ANN with three DBPs and Wantanagun [1], and the accuracy of 
successfully developed ANN. 

4.1 Summary of the most relevant three DBP 

Summary of the most relevant three DBPs used to predict 
the strains, R-square and root mean square error (RMSE) are 
shown in Tables 3 and 4, respectively. 

4.2 Comparison R2 and RMSE between ANN with 7DBPs and 
ANN with 3DBPs of the predicted strain 

This part shows the comparison of accuracy to predict strain 
between representative ANN with seven DBPs and ANN with the 
most relevant three DBPs. 

 

Table 3 Summary of the most relevant three DBPs of each  
     type of pavement 

Type of 
pavement 

Type of 
strain 

No. of DBPs Input 

Cement 
Modified 
crushed 

rock base 

Horizontal  
7 SCI ,BDI ,BCI ,F1 ,F2 ,Area ,D0 
3 F2, SCI, BCI 

Vertical  
7 SCI ,BDI ,BCI ,F1 ,F2 ,Area ,D0 
3 BCI ,Area ,D0 

Combined 
surface 

pavement 
structure 

Horizontal  
7 SCI ,BDI ,BCI ,F1 ,F2 ,Area ,D0 
3 F1 ,BDI ,BCI 

Vertical  
7 SCI ,BDI ,BCI ,F1 ,F2 ,Area ,D0 
3 BDI ,Area ,D0 

Thin 
surface 

pavement 
structure 

Horizontal  
7 SCI ,BDI ,BCI ,F1 ,F2 ,Area ,D0 
3 Area, BCI,BDI 

Vertical  
7 SCI ,BDI ,BCI ,F1 ,F2 ,Area ,D0 
3 SCI, F2, D0 

All type 
Horizontal  

7 SCI ,BDI ,BCI ,F1 ,F2 ,Area ,D0 
3 Area,BDI ,BCI 

Vertical  
7 SCI ,BDI ,BCI ,F1 ,F2 ,Area ,D0 
3 SCI ,BDI ,D0 
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Table 4 Summary of R-square and RMSE in each set of DBPs of 
each type of pavement 

Type of 
pavement 

Type of 
strain 

No. of 
DBPs 

R2 RMSE 

Cement 
Modified 

crushed rock 
base 

Horizontal  
7 0.9855 5.1436 
3 0.9374 10.4725 

Vertical  
7 0.9931 6.5418 
3 0.9508 17.1503 

Combined 
surface 

pavement 
structure 

Horizontal  
7 0.9997 1.7150 
3 0.9969 5.3444 

Vertical  
7 0.9999 1.7391 
3 0.9952 11.5579 

Thin surface 
pavement 
structure 

Horizontal  
7 1.0000 0.1557 
3 0.9999 0.7220 

Vertical  
7 1.0000 0.7503 
3 0.9947 7.8599 

All type 
Horizontal  

7 0.9884 9.2125 
3 0.9710 14.4052 

Vertical  
7 0.9875 16.7213 
3 0.9654 27.5315 

 
(a) 

 
(b) 

Fig. 14 Comparison of ANN with: (a) 7 DBPs and (b) 3 DBPs of  

 t,ac, cement modified crushed rock base 

Fig. 14 shows comparison of R-square and RMSE of ANN with 
seven DBPs (a) and three DBPs (b) of t,ac in cement modified 
crushed rock base. Performance of ANN with seven DBPs is 
better than ANN with three DBPs due to R-square and RMSE of 
seven DBPs are equal to 0.9855 and 5.1436, respectively. 
Meanwhile ANN with three DBPs (i.e., F2, SCI, and BCI), the R-
square and RMSE are equal to 0.9374 and 10.4724, respectively. 

4.3 Comparison of R2 from ANN and Wantanagun [1] 

Fig. 15 shows comparison of R-square of ANN with seven 
DBPs, ANN with three DBPs, and Wantanagun [1]. ANN with seven 
DBPs gave the best R-square at 0.9855 and 0.9931 for t,ac and 
c,sg, respectively. ANN with three DBPs has R-square more than 
that of Wantanagun [1] at 0.9374 and 0.9508 for t,ac and c,sg, 
respectively. Meanwhile, study of Wantanagun [1] gave R-square 
at 0.9110 and 0.8830 for t,ac and c,sg, respectively. 

 

 
Fig. 15 Comparison R2 of ANN with 7DBPs, ANN with 3DBPs and  
 Wantanagun [1] for t,ac and c,sg 

4.4 Accuracy of successfully developed ANN  

The successfully developed ANN has the following predictive 
performance and accuracy: 

1. For cement-modified crushed rock base, the prediction 
with seven DBPs gave R-square at 0.9855 and RMSE at 

5.1436 for t,ac, and R-square at 0.9931 and RMSE at 

6.5418 for c,sg. The best performance three DBPs are 
F2, SCI, and BCI which gave R-square at 0.9374 and 

RMSE at 10.4724 for t,ac and the best performance 
three DBPs are BCI, Area, and D0 which gave R-square 

at 0.9508 and RMSE at 17.1503 for c,sg. 
2. For combined surface pavement structure, the 

prediction with seven DBPs gave R-square at 0.9997 and 
RMSE at 1.7150 for t,ac, and R-square at 0.9999 and 
RMSE at 1.7391 for c,sg. The best performance three 
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DBPs are F1, BDI, and BCI which gave R-square at 0.9969 
and RMSE at 5.3444 for t,ac and the best performance 
three DBPs are BDI, Area, and D0 which gave R-square 
at 0.9952 and RMSE at 11.5579 for c,sg. 

3. For thin surface pavement structure, the prediction 
with seven DBPs gave R-square 1.0000 and RMSE at 
0.1557 for t,ac, and R-square at 1.0000 and RMSE at 
0.7504 for c,sg. The best performance three DBPs are 
Area, BCI, and BDI which gave R-square at 0.9999 and 
RMSE at 0.7220 for t,ac and the best performance three 
DBPs are SCI, F2, and D0 which gave R-square at 0.9508 
and RMSE at 7.8599 for c,sg. 

4. For all type pavement structures, prediction with 
seven DBPs gave R-square at 0.9884 and RMSE at 
9.2125 for t,ac, and R-square at 0.9875 and RMSE at 
16.7213 for c,sg. The best performance three DBPs are 
Area, BDI, and BCI which gave R-square at 0.9710 and 
RMSE at 14.4052 for t,ac and the best performance 
three DBPs are BCI, Area, and D0 which gave R-square 
at 0.9654 and RMSE at 27.5315 for c,sg. 

5. Conclusion 

For all types of pavements analyzed in this study, the R-
square from ANN is higher than the one from Wantanagun [1]. 
Using ANN with seven DBPs is better than using ANN with three 
DBPs. The maximum error of prediction is around only 3% for 
ANN with seven DBPs and three DBPs. 
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