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Abstract 

This paper presents a simple procedure to enhance the near-front approximation in the stress analysis of a three-
dimensional, isotropic, linearly elastic, cracked medium by the boundary integral equation method. The information of the 
asymptotic crack-front behavior is utilized as the basis for the enhancement of the approximation of the relative crack-face 
displacement. Two different schemes are proposed in the present study. In the first scheme, the available 9-node crack-tip 
elements are generalized by adopting the p-refinement in the direction perpendicular to the crack front. This clearly enables 
the resulting crack-tip elements to accurately capture high-order terms in the asymptotic near-front expansion of the relative 
crack-face displacement without the need to reduce the size of the elements. The invented crack-tip elements with the p-
refinement can then be utilized along with the standard elements with the h-refinement without the deterioration of the 
accuracy. The second scheme is based upon the use of available 9-node crack-tip elements together with the newly invented 
elements, termed back crack-tip elements, in the approximation of the relative crack-face displacement. The idea is to supply 
the square-root feature from the asymptotic crack-front field to the crack-tip elements and the elements behind them. In this 
way, the size of a region on the crack surface where the square-root behavior is captured accurately will not be reduced when 
the uniform h-refinement is employed to improve the solution accuracy. The two proposed elements are successfully 
implemented within the framework of a weakly singular symmetric Galerkin boundary element method. A selected set of 
results is then reported to demonstrate the computational performance of the proposed elements. 
Keywords: Boundary Integral Equation Methods, Back Crack-tip Elements, Crack-tip Elements, Relative Crack-face 
Displacement, Stress Intensity Factors 

 
1. INTRODUCTION 

Fracture-induced failure is a typical mode of failures 
commonly found in various engineering components and 
structures, especially for those made of brittle materials 
or materials with relatively low fracture toughness. The 
design of those structures to ensure their integrity and 
safety clearly requires ones to take such failure mode into 
consideration. To provide the sufficient basis in assisting 
the design procedure, the fundamental understanding of 
the fracture failure is required a priori, and it can be 
achieved through various approaches including theoretical 
simulations based upon a well-known theory of fracture 
mechanics. 

The modeling of pre-existing flaws and damages in 
materials in a form of cracks via the theory of linear elastic 
fracture mechanics (LEFM) is standard and has been 
adopted extensively in the study of brittle fractures. 

Within the framework of LEFM, the determination of stress 
intensity factors (SIFs) is a crucial task in the stress analysis 
of cracked bodies. Those fracture parameters, which 
provide the complete description of the dominant elastic 
field in the vicinity of the crack front, are essential and 
serve as fundamental data in various models to simulate 
fracture-related responses including the crack growth 
initiation and directions of propagation. Although the 
numerical techniques based upon the standard finite 
element method (FEM) and boundary integral equation 
method (BIEM) have been found capable of and 
extensively employed in performing the linear fracture 
analysis, the singularity nature of the stress field along the 
crack front [1] still poses challenging issues associated with 
the accuracy and efficiency of near-front approximation 
and the post-process for the SIFs. It has been well 
recognized that standard elements with polynomial-
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based shape functions has limited capability in discretizing 
the near-front field induced by the embedded singularity, 
and it generally requires extremely fine meshes to achieve 
the specified accuracy. To handle such difficulty, the 
direct integration of the right structure of the near-front 
field in the development of local interpolation functions 
is considered an attractive alternative. 

Within the framework of boundary integral equation 
method (BIEM), various types of crack-tip elements have 
been implemented and used in the linear fracture 
analysis. Luchi and Rizzuri [2] proposed an 8-node traction 
singular boundary element to account for the stress 
singularity in the stress analysis of three-dimensional crack 
bodies by the displacement integral equation and the 
subdomain technique. Mi and Aliabadi [3] introduced 
special crack-tip elements with the discontinuous shape 
functions to approximate the crack-face displacement 
adjacent to the crack front in the hypersingular dual 
boundary element method for three-dimensional crack 
problems. Later, Li et al. [4] developed a special crack-tip 
element by directly integrating the right asymptotic 
structure of the near-front relative crack-face 
displacement in the element shape function. Such 
elements were then implemented in the framework of 
the weakly singular symmetric Galerkin boundary element 
method (SGBEM) for the analysis of cracks in three-
dimensional, linear elastic media. While adopting those 
special elements along the crack-front can significantly 
enhance the accuracy of the approximation by using 
reasonably coarse meshes, the work was still limited to 
bodies made of isotropic materials. A 3-node singular 
crack-tip element that can exactly represents the strain 
singularity was later adopted by Kebir et al. [5] in the 
collocation-based dual boundary element method for the 
simulation of mixed-mode crack growth of bolted joints. 
A family of 9-node crack-tip elements was also developed 
by Pan and Yuan [6] in the development of the single-
domain boundary element method for the analysis of 
three-dimensional, anisotropic, cracked media. The 
hypersingular integral equations were employed in their 
formulation together with the collocation-based solution 
scheme.  Later, Grey et al. [7] integrated the constraint on 

the relative crack-face displacement to obtain an 
improved version of quarter-point elements, and then 
used them in the two-dimensional, linear fracture analysis 
by a hypersingular SGBEM. Rungamornrat and Mear [8] 
also extended the work of Li et al. [4] for both the integral 
formulation and the near-front approximation to handle 
the material anisotropy. Xie et al. [9] generalized the work 
of Mi and Aliabadi [3] to establish a 9-node crack-tip 
element with one or two of their edges being aligned with 
the crack front. The performance of the proposed 
element was investigated within the framework of a 
hypersingular, collocation-based, dual boundary element 
method. Most recently, Xie et al. [10] proposed a novel 
triangular crack-tip element for the fracture analysis by 
BIEM that can properly capture the square-root 
asymptotic behavior. In the development of such 
element, a distance function to the crack edge was 
employed together with the element shape functions of 
8-node serendipity elements.    

While various types of crack-tip elements were 
developed and successfully implemented within the 
framework of BIEMs, evidences from the past studies have 
indicated that the need for further development regarding 
the approximation of the near-front field is still required. 
For instance, the use of special crack-tip elements 
together with the uniform mesh refinement scheme can 
lead to the undesirable convergence behavior (e.g., [11-
12]); in particular, finer meshes can yield less accurate 
results than coarser ones. The same behavior was also 
pointed out by Rungamornrat et al. [13] when the solved 
relative crack-face displacement data was further used in 
the determination of the T-stress. This is due to the fact 
that as the mesh is uniformly refined, the region adjacent 
to the crack front, where the asymptotic behavior is 
accurately captured by the crack-tip elements, becomes 
smaller. Although the remaining larger region of the crack 
surface is also refined, the quality of the approximation of 
standard elements is not as good as the crack-tip 
elements especially for the region relatively close to the 
crack front. To avoid this problem, Rungamornrat et al. 
[13] suggested that finer meshes are required in the region 
on the back of the crack-tip elements to supply the 



การประชุมวิชาการวิศวกรรมโยธาแห่งชาติ คร้ังที่ 26  The 26th National Convention on Civil Engineering 
วันที่ 23-25 มิถุนายน 2564, การประชุมรูปแบบออนไลน์  23-25 June 2021, Online Conference 

 

STR-06-3 

comparable level of accuracy. 
In the present study, a simple approach is proposed 

to handle the problem described above. Two novel types 
of elements, the crack-tip element and the back crack-tip 
element, are constructed based upon the right structure 
of the near-front relative crack-face displacement and 
then implemented within the framework of three-
dimensional, weakly singular SGBEM. The performance of 
the developed elements in the context of both p- and h-
refinement schemes is demonstrated. 

2. PROBLEM FORMULATION 

Consider a three-dimensional infinite body Ω containing 
isolated cracks as shown in Fig. 1. The medium is made of 
a homogeneous, isotropic, linearly elastic material and 
free of the body force and remote loading. The crack 
surface is described by two geometrically coincident 
surfaces 𝑆ା and 𝑆ି with the outward unit normal vectors  
𝒏ା and 𝒏ି, respectively. The cracked medium is loaded 
by a self-equilibrated crack-face traction 𝒕ା ൌ െ𝒕ି. 
 

 
Figure 1 Schematic of elastic whole space containing 

isolated cracks. 
The boundary value problem of the cracked medium 

shown in Fig.1 can be formulated in a form of boundary 
integral equations by choosing the relative crack-face 
displacement Δ𝑢 ൌ 𝑢

ା െ 𝑢
ି as the primary unknown. 

By following the work of Rungamornrat and Mear [8], the 
relative crack-face displacement Δ𝑢  is governed by a 
weakly singular, weak-form traction integral equation: 

 

െ
ଵ

ଶ
 𝑢ሺ𝒚ሻΔ𝑡

𝑑𝐴ሺ𝒚ሻ
ௌశ ൌ  (1) 

    𝐷௧𝑢ሺ𝒚ሻ  𝐶
௧ ሺ𝝃 െ 𝒚ሻ𝐷Δ𝑢ሺ𝝃ሻ𝑑𝐴ሺ𝝃ሻ

ௌశ 𝑑𝐴ሺ𝒚ሻ
ௌశ   

 

where standard indicial notation applies throughout, in 
particular, lower case indices range from 1 to 3 and 
repeated indices imply the summation over their range;  
𝑢  is a sufficiently smooth test function; Δ𝑡

 ൌ 𝑡
ା െ

𝑡
ି  is jump in the crack-face traction; 𝐷ሺ⋅ሻ ൌ

𝜀௦𝑛ሺ⋅ሻ/𝜉௦  is a surface differential operator; and  
𝐶

௧ ሺ𝝃 െ 𝒚ሻ is a singular kernel defined explicitly by 

𝐶
௧ ሺ𝝃 െ 𝒚ሻ ൌ

ఓ
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                        2𝜈𝛿𝛿௧ െ
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మ 𝛿௧ቃ  
(2) 

 

where 𝑟 ൌ ‖𝝃 െ 𝒚‖; 𝜈 is Poisson’s ratio;  𝜇 is the elastic 
shear modulus; and 𝛿௧ denotes a standard Kronecker -
delta symbol. The kernel function 𝐶

௧ ሺ𝝃 െ 𝒚ሻ  is  
singular only at 𝝃 ൌ 𝒚 of order 1/𝑟 as 𝑟 → 0 and, as a 
result, all involved integrals in Eq. (1) are integrable in the 
sense of Riemann sum. 

3. SOLUTION SCHEME 

A well-known, weakly singular SGBEM is implemented to 
construct numerical solutions of Eq. (1). Standard Galerkin 
approximation together with the finite element procedure 
is utilized to discretize the trial function Δ𝑢 and the test 
functions 𝑢 into 
 

𝚫𝒖𝒋ሺ𝒚ሻ ൌ ∑ 𝒖𝒋
𝚫ሺ𝒑ሻ𝑵

𝒑ୀ𝟏 𝝓ሺ𝒑ሻሺ𝝃ሻ;  

𝒖𝒌ሺ𝒚ሻ ൌ ∑ 𝒖ෝ𝒌
ሺ𝒑ሻ𝑵

𝒑ୀ𝟏 𝝓ሺ𝒑ሻሺ𝒚ሻ  
(3) 

 

where 𝜙ሺሻ  is the nodal basis function associated with 
the pth node; 𝑢

ሺሻ are nodal degrees of freedom at the 
pth node; 𝑢ො

ሺሻ are arbitrary constants at the pth node; and 
𝑁  denotes the number of nodes resulting from the 
discretization. Due to the weakly singular nature of the 
boundary integral equation (1), the nodal basis functions 
𝜙ሺሻ is only required to be continuous and they can be 
constructed in an elementwise fashion following standard 
finite element procedure. In the present study, standard 
𝐶  isoparametric elements are employed to discretize 
the majority of the crack surface except the region close 
to the crack front where proposed crack-tip elements are 
adopted. Substituting Eq. (3) into Eq. (1) yields the 
following system of linear algebraic equations: 
 

𝐂Δ𝐔 ൌ 𝐓  (4) 
 

where entries of the coefficient matrix 𝐂, the vector of 
nodal degrees of freedom Δ𝐔, and the prescribed vector 
𝐓  are defined explicitly by 

ሾ𝐂ሿଷሺିଵሻା,ଷሺିଵሻା ൌ (5) 
 𝐷௧𝜙ሺሻሺ𝒚ሻ  𝐶

௧ ሺ𝝃 െ 𝒚ሻ𝐷𝜙ሺሻሺ𝝃ሻ𝑑𝐴ሺ𝝃ሻ
ௌశ 𝑑𝐴ሺ𝒚ሻ

ௌశ   
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ሾΔ𝐔ሿଷሺିଵሻା ൌ 𝑢
ሺሻ  (6) 

ሾ𝐓ሿଷሺିଵሻା ൌ െ ଵ

ଶ
 𝜙ሺሻሺ𝒚ሻΔ𝑡

ሺ𝒚ሻ𝑑𝐴ሺ𝒚ሻ
ௌశ  (7) 

The coefficient matrix 𝐂 and the known vector 𝐓0 are 
constructed in an efficient manner through a standard 
assembly procedure. The numerical evaluation of all 
involved weakly singular and nearly single double surface 
integrals over a pair of elements is achieved by adopting 
a special quadrature based on the integrand regularization 
via variable transformations and Gaussian quadrature rule 
[14]. The final system of linear equations (4) is then solved 
by a selected indirect linear solver such as a conjugate 
gradient method. 

4. ENHANCEMENT OF NEAR-FRONT APPROXIMATION  

It is well known that the relative crack-face displacement 
in the vicinity of the crack front exhibits a square-root type 
behavior, and this must be treated appropriately in the 
approximation. From the work of Rungamornrat et al. [13], 
the relative crack-face displacement possesses the 
following structure 
 

𝚫𝒖 ൌ √𝑟ሺ𝜶  𝜶ଵ𝑟  𝜶ଶ𝑟ଶ. . . ሻ  (8) 
 

in which 𝑟 denotes the distance in the direction 
perpendicular to the crack front and 𝜶  are constant 
vectors. It is apparent from (8) that the solution of Δ𝒖 can 
be represented by a product of a square-root function √𝑟 
and a regular function of 𝑟 . The structure of Δ𝒖  was 
directly integrated to construct the 9-node crack-tip 
elements in the work of [4, 8]. Nevertheless, such 
elements can capture only the first three terms of the 
asymptotic expansion in Eq. (8). 

In the present study, the 9-node crack-tip element 
developed by [4, 8] is extended via the p-refinement 
scheme (i.e., a scheme to enhance the approximation via 
the increase in the degree of polynomials in the element 
shape functions) to allow more terms in the expansion in 
Eq. (8) to be captured. In particular, the degree of 
polynomials used in the approximation is augmented by 
increasing the number of nodes in the direction normal to 
the crack front as shown in Fig. 2 while still maintaining 
the square-root feature. The final element shape function 
of the crack-tip element is given explicitly by 

𝜓തሺሻሺ𝜉, 𝜂ሻ ൌ ඥଵାఎ


𝜓ሺሻሺ𝜉, 𝜂ሻ  (9) 

𝐴 ൌ ሼ
1/2 𝜂ሺሻ ൌ െ1

ඥ1  𝜂ሺሻ 𝜂ሺሻ ് െ1
  (10) 

 

where  𝜓ሺሻ are standard shape functions of a Lagrange 
element containing 3x(2+𝑛 ) nodes resulting from the 
product between one-dimensional Lagrange polynomials 
corresponding to the number of nodes in each direction; 
𝑛  0 denotes the number of interior nodes in the 
direction perpendicular to the crack front; and the side 
𝜂 ൌ െ1 correspond to the crack front. In this sense, the 
extended element shape functions can capture the first 
2+𝑛 terms in the expansion in Eq. (8).  

Figure 2 Schematic of  master crack-tip element 
containing (a) 9 nodes and (b) 3x(2+ 𝑛 ) 
nodes. The side indicated by 𝜂 ൌ െ1 
denotes the crack front. 

Another type of elements, termed here a “back crack-
tip element”, is implemented along with the available 9-
node crack-tip elements to enhance the approximation of 
the near-front relative crack-face displacement. The idea 
is to supply the square-root feature from the asymptotic 
structure of the near-front field in Eq. (8) to not only the 
crack-tip elements located along the crack-front but also 
the elements behind them (i.e., the back crack-tip 
elements). In this way, the crack front region where the 
square-root behavior is properly captured will not be 
reduced when the uniform h-refinement (i.e., a scheme to 
enhance the approximation via refining the element size 
or increasing the number of elements in the finite element 
mesh) is adopted. The final shape functions for the 9-node 
back crack-tip element, with the master element shown 
in Fig. 2(a) and the side 𝜂 ൌ െ1  representing the side 
closest to the crack-front, are taken as 

 

𝜓തሺሻሺ𝜉, 𝜂ሻ ൌ ඥଶ್ାଵାఎ

ඥଶ್ାଵାሺሻ
𝜓ሺሻሺ𝜉, 𝜂ሻ  (11) 
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where 𝑛 denotes the order of the row of the back crack-
tip elements counted from the first row adjacent to the 
crack-tip element.  

In the analysis, two following refinement schemes for 
crack-tip elements are proposed. In the first scheme (p-
refinement), the size of the crack-tip elements in the 
direction perpendicular to the crack front is maintained 
whereas the number of interior nodes 𝑛 in the same 
direction is increased as shown schematically in Fig. 3(a). 
For the second scheme (h-refinement), the 9-node crack-
tip elements are used and refined into smaller 9-node 
crack-tip elements and one or several layers of 9-node 
back crack-tip elements as illustrated in Fig. 3(b).   

 

Figure 3 Schematic of two refinement schemes: (a) p-
refinement of crack-tip elements (highlighted 
in blue) and (b) h-refinement of 9-node 
crack-tip elements into 9-node crack-tip 
(highlighted in blue) and back crack-tip 
elements (highlighted in grey). 

5. POSTPROCESS FOR STRESS INTENSITY FACTORS  

Once the relative crack-face displacement is solved, 
such data is directly used together with the explicit 
extrapolation-free formula proposed by Rungamornrat 
and Mear [8] to compute the stress intensity factors (SIFs). 
The integration of the right asymptotic behavior into the 
crack-tip elements allows the post-process for the SIFs in 
terms of the extra degrees of freedom located along the 
crack front.  

6. NUMERICAL RESULTS 

The computed SIFs and relative crack-face 
displacement of a penny-shaped crack embedded in an 
isotropic, elastic whole space under uniformly distributed 
normal and shear tractions are first compared with 

available exact solutions [15] to verify the proposed 
elements within the framework of weakly singular SGBEM. 
The enhancement of the near-front approximation via the 
two refinement schemes is then investigated by 
comparing computed stress intensity factors with those 
generated from the uniform h-refinement scheme without 
the back crack-tip elements. In particular, the rate of 
convergences with respect to the L2-norm of the error of 
the relative crack-face displacement for all three 
refinement schemes are also obtained and compared. 

Consider a penny shaped crack of radius 𝑎 contained 
in an isotropic elastic whole space with its surface 
oriented perpendicular to 𝑥ଷ-axis as shown in Fig. 4. The 
medium is loaded on the crack surface by either a 
uniformly distributed normal traction 𝜎 or shear traction 
𝜏 in the 𝑥ଵ  direction as illustrated in Fig. 5. 

 
Figure 4 Schematic of a penny shape crack of radius 

𝑎 embed in unbounded domain. 

Figure 5 Penny shaped crack in an elastic whole space 
loaded by uniformly distributed (a) normal 
traction and (b) shear traction in 𝑥ଵ direction. 

In the analysis, the crack surface is first divided into 
two regions. The region adjacent to the crack front is 
discretized by the proposed elements via the three 
refinement schemes whereas the remaining region is 
discretized by standard 6-node and 9-node isoparametric 
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𝐶 -elements. Three meshes based upon the p-
refinement of the crack-tip elements (Scheme-1), the h-
refinement of the 9-node crack-tip and 9-node back crack-
tip elements (Scheme-2), and the h-refinement of the 9-
node crack-tip and standard elements (without the back 
crack-tip elements, Scheme-3) are shown in Fig. 6(a), (b) 
and (c), respectively. The first mesh of each scheme are 
chosen to be identical with the region adjacent to the 
crack front being discretized by a single layer of 9-node 
crack-tip elements. The crack-tip elements (blue 
elements) in the Mesh-2p and Mesh-3p contain 12 and 15 
nodes, respectively; the Mesh-2h and Mesh-3h contain 
one layer and three layers of back crack-tip elements (grey 
elements), respectively; and the Mesh-2 and Mesh-3 are 
similar to the Mesh-2h and Mesh-3h with the back crack-
tip elements being replaced by the standard elements. 

 

 
Figure 6 Three meshes of penny shaped crack 

adopted in the analysis: (a) scheme-1, (b) 
scheme-2, and (c) scheme-3 where crack-tip 
elements and back crack-tip elements are 
highlighted in blue and grey, respectively. 

For the crack subjected to the uniformly distributed 
normal traction, only the mode-I SIF is non-zero and it is 
constant along the crack front. The percent errors of 
computed mode-I SIFs (relative to the exact solution 
reported in [15]) are reported in Table 1 for all three 
schemes (i.e., Scheme-1, Schem-2, and Scheme-3). It is 
evident that results obtained for all cases are in excellent 
with the benchmark solutions; in particular, the error is 

less than 0.05% for all meshes. While the SIFs computed 
from the Scheme-1 are already accurate with the error 
less than a fraction of one percent, the improvement of 
the solution upon the refinement is not confirmed. Use of 
the Scheme-1 and Scheme-2 based upon the proposed 
elements yield the better convergence behavior; clearly, 
the percent error decreases as the mesh is refined. To 
further demonstrate the rate of convergence of the 
proposed schemes, the L2-norms of the error of the 
relative crack-face displacement are plotted against the 
size of elements in Fig. 7 where the size of element in 
each mesh is the length of the side which perpendicular 
to the crack front of the element behind the crack-tip 
element. The computed rates of convergence of results 
obtained from the Scheme-1 and the Scheme-2 are 
approximately 3.126 and 3.229, respectively, and they are 
significantly improved from that for the Scheme-3 
(approximately 0.929).  

 

 
Figure 7 L2-norm of error of the relative crack-face 

displacement versus the size of element in 
logarithmic scale for penny-shaped crack 
under uniformly distribution normal traction. 

Table 1 The percent errors of computed mode-I SIFs of 
penny shaped crack subjected to uniformly 
distributed normal traction. 

Mesh Scheme-1 Scheme-2 Scheme-3 
1 0.02400 0.02400 0.02400 
2 0.01145 0.00967 0.02932 
3 0.00613 0.00702 0.03818 
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For the crack under the uniform shear traction, only 
the mode-II and mode-III SIFs are non-zero and they vary 
along the crack front. The percent errors of computed 
non-zero mode-II and mode-III SIFs at 𝜃 = 0o, 45o and 90o 
(where 𝜃  is an angle measured from the 𝑥ଵ -axis and 
used to parameterize the crack front) are reported in 
Table 2 and 3, respectively. Again, the computed SIFs from 
the Scheme-1 and Scheme-2 agree very well with the 
exact solution [15] and more accurate than those 
obtained from the Scheme-3. The computed L2-norm of 
the error of the relative crack-face displacement are also 
reported as a function of the size of elements in Fig 9 for 
all three schemes. Similar to the previous loading case, 
the estimated rates of convergence from the Scheme-1 
and Scheme-2 are approximately the same (i.e., 3.087 and 
3.197) and significantly higher than that of the Scheme-3 
(i.e., 0.928). It should be pointed out that the significant 
improvement of both the accuracy of the computed SIFs 
and the rate of convergence of the numerical solutions 
results directly from the use of the two proposed 
elements in the approximation of the near-front field. 

Table 2 The percent errors of computed mode-II SIFs of 
penny shaped crack subjected to uniformly 
distributed shear traction 

𝜽 Mesh Scheme-1 Scheme-2 Scheme-3 

0 
1 0.14614 0.14614 0.14614 
2 0.07081 0.08813 0.13484 
3 0.07006 0.08362 0.12354 

45 
1 0.14488 0.14488 0.14488 
2 0.07244 0.08842 0.13529 
3 0.06392 0.08416 0.12464 

Table 3 The percent error of computed mode-III SIFs of 
penny shaped crack subjected to uniformly 
distributed shear traction 

𝜽 Mesh Scheme-1 Scheme-2 Scheme-3 

45 
1 0.07762 0.07762 0.07762 
2 0.00609 0.00152 0.04566 
3 0.00152 0.00000 0.04261 

90 
1 0.08717 0.08717 0.08717 
2 0.00108 0.00108 0.04197 
3 0.00108 0.00108 0.04627 

 

 
Figure 8 L2-norm of error of the relative crack-face 

displacement versus the size of element in 
logarithmic scale for penny-shaped crack 
under uniformly distribution shear traction 

7. CONCLUSIONS 

A simple approach, via the use of crack-tip and back 
crack-tip elements, has been proposed to enhance the 

near-front approximation in the stress analysis of three-
dimensional, isotropic, linearly elastic, cracked media by a 
weakly singule SGBEM. The two special elements have 
been constructed by integrating the right structure of the 
near-front relative crack-face displacement. The existing 9-
node crack-tip element has been modified to enable the 
adjustment of the number of nodes in the direction 
normal to the crack front. This therefore allows the crack-
tip element to capture more terms in the asymptotic 
expansion. The 9-node back crack-tip element, after its 
shape function were enriched by the square-root function, 
can be used along with the 9-node crack-tip element in 
the h-refinement scheme without the reduction of the 
region on the crack surface where the square-root 
behavior is captured correctly. 

Results from an extensive numerical study have 
confirmed that the use of either the crack-tip elements 
with the p-refinement scheme or the 9-node crack-tip and 
back crack-tip elements with the h-refinement scheme 
provides the significant improvement of the accuracy of 
the computed SIFs and the rate of convergence of the 
relative crack-face displacement compared with the case 
of a uniform h-refinement scheme with only 9-node crack-
tip elements.    
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