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Abstract 

This paper presents the instability and post-buckling 
behaviors of the variable-arc-length (VAL) pipe caused by 
internal transporting fluid motion, including the effects of the 
pipe weight and variation of internal fluid pressure. The set of 
governing equation of the pipe, which is nonlinear first-order 
differential equation is derived by considering the equilibrium of 
force and moment and the geometric relation of the differential 
pipe segment in two-dimensions. The variation of internal 
pressure inside the pipe is calculated from the energy 
conservation based on Bernoulli principle. The set of governing 
equation corresponds to the two-point boundary value 
problem, which is conveniently solved by using the shooting 
method. The present numerical results are found to be 
compatible with the elliptic integral solution provided in the 
available literature. The numerical results indicate that the 
effects of the pipe and internal fluid weight are to decrease the 
critical buckling fluid velocity and cause to lose the pipe 
stability. 

Keywords:  Critical Velocity, Large Deflection, Nonlinear Frist-
Order Differential Equation, Shooting Method, Variable-Arc-
Length Pipe 
 

1. Introduction 

From the literature review, the problem of large deflection 
of variable-arc-length (VAL) elastica structure has been 
investigated by many researchers. Concerning with variable-arc-
length beam, the research examples are presented by Theppitak 
[1], Rodsungwal [2], and Klaycham [3]. The span length of the 
variable-arc-length beam is a fixed distance, while the arc-length 
can be varied due to the external load. For this reason, the 
model of this structure type can be applied for pipe transporting 

crude oil in offshore structure applications. The problem of 
variable arc-length pipe was investigated by Chucheepsakul and 
Monprapussorn [4] using the elliptic integral method. They 
reported that the dimensionless critical internal fluid velocity of 
the VAL pipe for the first four modes are 9.8696, 39.4784, 
88.8264, and 157.9137, respectively. Their numerical results 
have shown that the effect of elastic rotational restraint at 
support is to stabilize the pipe and to increase critical velocity. 
However, their mathematical model has not captured the effect 
of pipe weight and the variation of internal pressure along the 
pipe.  

This study developed a mathematical model for analyzing 
of VAL pipe concerning the effect of pipe and internal fluid 
weight, internal fluid pressure, and compression force at the 
support. The set of nonlinear first-order differential equation of 
VAL pipe is derived by the considering equilibrium of force and 
moment. The numerical solution is solved by the shooting 
optimization method, which is found to be agreeable in 
comparing with the elliptic integral method presented by 
Chucheepsakul and Monprapussorn [4].  

 
Fig. 1 The characteristic of variable arc-length pipe transporting fluid 
under applied compression at support B 
 

2. Governing Equation and Numerical Method 

Fig. 1 shows the schematic of variable-arc-length pipe 
transporting fluid in the two-dimensional Cartesian coordinate 
system ( x , y ). Both ends of the pipe are pinned support, which 
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located at the fixed position. The right end (point B) is subjected 
to a compression force ( BN ) and can be slipped through the 
support. The span length is constant of length L , while total-
arc-length ( ts ) is an unknown length, which has to be 
investigated from the numerical solution. 

 

 
Fig. 2 Free body diagram of VAL pipe transporting fluid in effective 
system 
 

  
Fig. 3 Free body diagram of VAL pipe segment 

 
Fig. 4 Free body diagram of internal fluid segment 

2.1 Geometric Relationship 

Fig. 2 shows the free body diagram of a pipe transporting fluid 
in an effective system. Based on the differential geometry of the 
pipe segment with infinitesimal length ( )ds  in a plane curve, 
the geometric relations of the elastica pipe [5-6] can be 
expressed as follows. 

sin
dy

ds
  (1a) 

cos
dx

ds
  (1b) 

1 d M

r ds EI


      (1c) 

where x  and y  are the horizontal and vertical coordinates; 
  is the curvature of a pipe; r  is the radius of curvature;   
is the angle measured from the horizontal direction to the 
tangent line of the pipe; M  is the bending moment; and EI

is the flexural rigidity of the pipe. 
 

2.2 Equilibrium of Force and Moment 

From the effective system of pipe segment shown in Fig. 2, 
it can be separated into the apparent systems of the pipe and 
the internal fluid as shown in Figs. 3 and 4, respectively. 
Considering the pipe segment, the equilibrium of force in 
tangential and normal directions are given in Eqs. (2a) and (2b); 
and the equilibrium of moment about point O can be given in 
Eq. (2c). 
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where tF  and nF  are the summation of fluid force in 
tangential and normal directions, respectively, acting on the pipe; 

pw  is the pipe weight per unit length; N , V , and M  are 

the axial compression force, shear force, and bending moment, 
respectively. Similar to the above, considering Fig. 4, the 
equilibrium of force in tangential and normal directions of 
internal fluid segment are given in Eqs. (3a) and (3b), respectively. 

M+dM

(wp+wf)ds

(N+dN)+(P+dP)A

V+dV

V

M
N+PA

ds

y

y+dy

x x+dx

dx

dy


d

n̂

t̂

O

2

cAV d 

M+dM

wpds

N+dN

V+dV

V

M
N

ds

y

y+dy

x x+dx

dx

dy


d

n̂

t̂

O

Fnds

Ftds

wfds

(P+dP)A

PA

ds

y

y+dy

x x+dx

dx

dy


d

n̂

t̂

O

2

cAV d 

Fnds

Ftds



การประชุมวิชาการวิศวกรรมโยธาแห่งชาติ ครั้งที่ 25 The 25th National Convention on Civil Engineering 
วันที่ 15-17 กรกฎาคม 2563 จ.ชลบรุี July 15-17, 2020, Chonburi, THAILAND 

 

STR18-3 

sint f

dP
F A w

ds
   (3a) 

2 cosn c f
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 
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in which fm A  and fw Ag  are the mass and 

weight per unit length of internal fluid; cV  and  are the 
velocity and density of internal fluid; A  is the inside cross-
sectional area of the pipe; and g  is the gravitational 
acceleration. To obtain the equilibrium equation of the effective 
pipe transporting fluid system, the method of superposition is 
applied to Eqs. (2) and (3). By equating Eq. (2a)=(3a) and Eq. 
(2b)=(3b), yield the Equilibrium of force in tangential and normal 
directions as given in Eqs. (4a) and (4b), respectively. Similarly, 
one obtains the moment equilibrium equation of the effective 
pipe system as given in Eq. (4c).  
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2.3 Variation of Internal Pressure  

Considering internal pressure in Fig 4, when the internal fluid 
in the VAL pipe is moving it causes changes in internal pressure. 
Based on the energy conservation, the variation of internal 
pressure along the pipe can be calculated from the Bernoulli 
equation as follows. 

dP dy

ds ds
  (5) 

where g   is the specific weight of the internal fluid.  

2.4 Numerical Solution by Shooting Method 

For convenience in the numerical computation, the set of 
first-order nonlinear differential equation should be written in 
nondimensional form, in which the following relations are used. 
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where *s  and ts  are dimensionless arc-length coordinate  
and the total arc-length; x  and y  are dimensionless 
coordinate along horizontal and vertical directions; pw  and 

fw  are dimensionless pipe and internal fluid weights; cV  

and P  are dimensionless velocity and pressure of internal 

fluid; M , V , and N  are bending moment, shear force, 
and axial compression force, respectively. Using Eq. (6), the set 
of governing equations of the pipe transporting fluid, including 
geometric relation (Eq. 1), equilibrium equation (Eq. 4), pressure 
variation (Eq. 5) can be transformed to dimensionless form as 
follows. 
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Eqs. (7a)-(7g) are nonlinear first-order differential equations, 
which correspond to the two-point boundary value problem. 
Then the shooting optimization method is used to solve the 
numerical solution. From the support conditions, the coordinate 
of the left end support (point A) is located at x =0 and y =0, 
while the right support (point B) is at x =1 and y =0. Because 
the support is pinned, the bending moment at the pipe ends is 
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equal to zero. The inlet water pressure (point A) is specified 

according to the pump performance ( AP P ). Because both 
supports are at the same level and the water head loss is not 
considered, the outlet pressure is then equal to the inlet 

pressure ( B AP P ). In the numerical implementation, the total 
arc-length ( ts ), which is the control variable is set the value. 

Then Eq. (7) is integrated from *s =1 (point B) to *s =0 (point 
A). Seven initial conditions at support B need to be given, which 
can be categorized into two groups. First is the specified 

condition such as 1x  , 0y  , BN N , BP P , and 

0M  . The second group is the unknown conditions including 

  and V , which have to guess firstly, as B  and BV , 

respectively. Also, the fluid velocity ( cV ) is unknown and will be 
guessed for the first iteration. At the upper limit of integration 
(point A), the specified boundary conditions ( 0x  , 0y  , and 

0M  ) should be set for the minimization process. Then the 
iteration process is repeated until the solution is satisfied the 
following objective function. 

, ,
Min (0) (0) (0) 0
B B cV V

x y M


      (8) 

 

3. Numerical Results 

3.1 Numerical Validation in Case of VAL Pipe without Effect of 
Pipe Weight and Internal Fluid Pressure 

The numerical results obtained from the shooting method 
(SM) are checked with the result from the Elliptic integral 
method (EIM) presented by Chucheepsakul and Monprapussorn 
[4]. In this validation example, the effect of pipe and internal 
fluid weights ( p fw w =0), and the inlet fluid pressure ( AP 

0) is not considered.  
The load-displacement curve between the internal fluid 

velocity ( )cV  and the support rotation at point B ( )B  for the 
first four modes of VAL pipe are shown in Fig. 5. The numerical 
result shows that the pipe remains keeping undeformed shape 
until the fluid velocity reaches the maximum value at the critical 
state. At this state, the pipe is buckled. The maximum fluid 
velocity is called the critical buckling velocity. Beyond the critical 
state, the pipe is unstable and the post-buckling behavior occurs. 
At an unstable state, the support rotation is increased but the 
fluid velocity decreases. It is also found that the higher buckling 
mode requires a higher critical fluid velocity.  

 
Fig. 5 Relations between internal fluid velocity ( cV ) and support 
rotation at point B ( B ) for the first four buckling modes  
 

The critical fluid velocity for the first four buckling modes of 
VAL pipe obtained in this study by using the shooting method 
(SM) is shown in Table 1. It is also compared with the results 
from the elliptic integral method (EIM) presented by 
Chucheepsakul and Monprapussorn [4]. The numerical results 
compared in Table 1 include the angle at support B ( )B , the 
maximum deflection max( )y , the total arc-length ( )ts , and the 

critical fluid velocity max( )cV . The critical velocity for the first 
four modes are found to be 9.869596, 39.476336, 88.780166, 
and 157.575295, respectively, which is agreeable with the result 
from EIM. Also, these critical values are acceptable with the 
theoretical buckling load of column derived from the linear 

analytical method, which equals to 2 2n   (Exact solution), in 
which n  is the buckling mode number.  

 

Fig. 6 Deformed shape of VAL pipe for the first four modes ( cV =5)  

 

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100

120

140

160  mode1

 mode2

 mode3

 mode4

In
te

rn
al

 fl
ow

 v
el

oc
ity

 

Support rotation,       (rad)

critical state

UnstableUnstable

B

 

0.0 0.2 0.4 0.6 0.8 1.0

-0.04

-0.02

0.00

0.02

0.04

( )xx-coordinate

 mode1

 mode2

 mode3

 mode4

y-
co

or
di

na
te

Inflection point



การประชุมวิชาการวิศวกรรมโยธาแห่งชาติ ครั้งที่ 25 The 25th National Convention on Civil Engineering 
วันที่ 15-17 กรกฎาคม 2563 จ.ชลบรุี July 15-17, 2020, Chonburi, THAILAND 

 

STR18-5 

Table 1 Comparison of numerical result at critical state of VAL pipe for the first four deformed mode shapes ( pw = 0.00, fw = 0.00, AP = 

0.00 and BN = 0.00)   

Mode 
B  maxy  ts  maxcV  

EIM SM EIM SM EIM SM EIM SM 

1 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 9.869604 9.869596 

2 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 39.478418 39.476336 

3 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 88.826440 88.780166 

4 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 157.913670 157.575295 

The post-buckling configuration of the VAL pipe for the first 

four modes subjected to the same fluid velocity ( cV =5) are 
shown in Fig. 6. It is found that, at this velocity, there are at least 
four buckled shapes, which depend on the number of an 
inflection point. The number of inflections point for each 
buckling mode is found to be n -1.  

 

3.2 Effect of Pipe Weight and Fluid Pressure Variation 
This section presents the instability of VAL pipe including the 

effect of pipe and internal fluid weights, internal pressure, and 
compression at the support. In this example, internal fluid weight 
( )fw  is set to be 4, while the pipe weight ( )pw , the inlet fluid 

pressure ( )AP , and the compression force at the support B 

( )BN  are specified to be 2. 
 

 

Fig. 7 Relations between internal fluid velocity ( cV ) and support 
rotation at point B ( B ) for the first four buckling modes 
 

The relations between the fluid velocity ( cV ) and the 
support rotation at point B ( )B  for the first four modes of VAL 
pipe are shown in Fig. 7. As shown in this figure, the 1st mode 
obeys only unstable behavior, where the support rotation 

increases by decreasing the fluid velocity. The deformed shape 
becomes the 3rd mode when the fluid velocity reaches the 
transition point (Bp). For the 3rd mode, the fluid velocity is 
suddenly increased until it passes the point Bp and approaches 
the critical state. The maximum or critical velocity can be found 
from the critical state, which is equal to 81.429640. Beyond the 
critical state, the fluid velocity is decreased by increasing the 
support rotation. The post-buckling behavior of the 2nd and the 
4th modes are the same, but the critical velocity of the 2nd mode 
is lower than the other one. The critical velocity of the 2nd and 
the 4th modes are found to be 35.5 0 6 6 2 5  and 154.239955, 
respectively.  

The deformed shape for the first four buckling modes along 
the load-displacement curve in Fig. 7 are shown in Figs. 8-11, 
respectively (the abbreviations 1a, 1b, 1c, …, and 4d are 
represented the point on the curves in Fig. 7). It is found that the 
number of inflections point for each buckling mode is found to 
be n -1, which is agreeable with the earlier result in previous 
section. 

 
Fig. 8 Buckled shape of the 1st mode of VAL pipe for various fluid 
velocities 
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Fig. 9 Buckled shape of the 2nd mode of VAL pipe for various fluid 
velocities 

 
Fig. 10 Buckled shape of the 3rd mode of VAL pipe for various fluid 
velocities 

 
Fig. 11 Buckled shape of the 4th mode of VAL pipe for various fluid 
velocities 

 

Fig. 12 Buckled shape of VAL pipe for the first four modes ( cV =5)  

Fig. 12 shows the first four buckled configuration under the 
same fluid velocity of cV =5. Based on the buckled shapes in 

Fig. 12, the distributions of shear force ( )V , bending moment

( )M , axial force ( )N , and the internal fluid pressure ( )P  along 
the arc-length coordinate ( )s  are shown in Figs. 1 3 -16 , 
respectively. We find that the maximum shear force is located at 
the inflection point. The bending moment and axial compression 
force are maximum at the highest or lowest points on the 
buckled shape. However, the maximum internal pressure is 
located at the lowest point on a buckled shape, while the 
minimum pressure is located at the highest point on the buckled 
shape.  

 

Fig. 13 Distribution of shear force ( )V  along arc-length coordinate 

( )s  for the first four modes ( cV =5) 
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Fig. 14 Distribution of bending moment ( )M   along arc-length 

coordinate ( )s  for the first four modes ( cV =5) 

 

Fig. 15 Distribution of axial force ( )N  along arc-length coordinate 

( )s  for the first four modes ( cV =5) 

 

Fig. 16 Distribution of internal pressure ( )P  along arc-length 

coordinate ( )s  for the first four modes ( cV =5)  

4. Conclusions 

This paper presents the large deflection of VAL pipe 
including the effect of pipe and internal fluid weights, internal 
pressure, and compression force at the support. The set of 
governing first-order differential equations of pipe is derived 
from the geometric relation and the equilibrium equation. Based 
on energy conservation, the variation of internal pressure is 
calculated from the Bernoulli equation. The numerical solution 
is solved by using the shooting method. The presented 
numerical results are found to be agreeable with the result from 
the elliptic integral method provided in the literature. Without 
the effect of pipe and internal fluid weight, the buckling 
behavior of a pipe under the centrifugal force of internal fluid 
behaves the theoretical buckling column behavior. The 
dimensionless maximum or critical fluid velocity is approached 

2( )n , in which n  is the buckling mode number. Beyond the 
buckling state, the pipe obeys unstable behavior. Including the 
effect of pipe and internal fluid weights, internal pressure, and 
compression force at support, the buckled path of the 1st mode 
can be transited to the 3rd mode. 
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