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Abstract 

Hydrometeorological forecasts are essential to water 
management plans including early warning and flood damage 
prevention. Forecasting models have varying levels of skill 
depending on the forecast location and period of the year. 
Measure of skills can have a strong influence on how forecasts 
impact decisions related to water management, and they must 
be communicated to the users of the forecasts. Various forecast 
verification methods are available for assessing the multiple 
facets of forecast performance including notions such as 
accuracy, reliability and sharpness. This paper describes a variety 
of complementary performance metrics to verify Hydro 
Informatic Institute (HII)’s flood forecasts in Chao Phraya River 
Basin. The accuracy of the forecasts is evaluated using the 
continuous rank probability score (CRPS) which quantifies the 
difference between a forecast distribution and observation. The 
sharpness of forecasts is calculated using the ratio of inter 
quantile range (IQRs) of streamflow forecasts and a historical 
reference. The reliability of forecasts is also considered using 
attribute diagrams and Kolmogorov-Smirnov (KS) test. In 
addition, this paper applies the traditional continuous 
verification methods and statistics such as Bias, Mean Absolute 
Error (MAE), Root Mean Square Error (RMSE), Nash-Sutcliffe 
Efficiency Coefficient (NSE), Coefficient of determination (R2) and 
Pearson Correlation Coefficient (r). The comparison of the 
forecast and observed discharge indicate that the MIKE11 model 
can predict well. The trends are similar in almost all key stations 
and the overall correlation is acceptable. This study definitely 
answers the question regarding the correlation between the 
forecast and observed streamflow and the performance of the 
forecasts. Based on the verification statistics, it was 
demonstrated that HII’s flood forecasts are reliable.  

Keywords: Flood forecasting, Forecast verification, Forecast 
accuracy, Forecast sharpness, Forecast reliability 

1. Introduction 

The term forecast means a prediction of the future state and 
the forecast verification means the process of accessing the 
quality of a forecast. The forecast is compared or verified against 
a corresponding observation of what actually occurred, or some 
good estimate of the true outcome. The verification can be 
qualitative or quantitative. In either case, it should give 
information about the nature of the forecast errors. Forecast 
quality is required to monitor the accuracy and improvement of 
the forecasts over time. Forecast quality is not the same as 
forecast value. A forecast has high quality if it predicts the 
observed conditions well according to some objectives or 
subjective criteria. It has value if it helps the user to make a better 
decision. Hydro-informatics Institute Thailand (HII) has a flood 
forecasting system in the Chao Phraya River Basin and this study 
will use the flood forecasting (discharge data) from that system 
to evaluate the performance of the forecasts. 

2. Study area and Data 

The study area covers the Chao Phraya River Basin and the 
key stations are selected in five rivers; Ping river, Wang river, Yom 
river, Nan river and Pasak river.  
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Fig. 1 Location of key stations in Chao Phraya River Basin 

Key stations are selected based on having regular long-term 
maintenance to generate representative series of river system and 
locations free of backwater effects from any existing, ongoing or future. 
The generated datasets; observed and forecasted discharge from HII’s 
flood forecasting system are collected and used in this study. 

Table 1 Observed and Forecasted Discharge from Key Stations 

Stations River Frequency Period 

P.67 Ping River Daily 2017-2020 

P.1 Ping River Daily 2017-2020 

P.7A Ping River Daily 2017-2020 

W.1C Wang River Daily 2017-2020 

Y.14 Yom River Daily 2017-2020 

Y.17 Yom River Daily 2017-2020 

N.60 Nam River Daily 2017-2020 

N.67 Nam River Daily 2017-2020 

S.4B Pasak River Daily 2017-2020 

 
3. Methodology 

3.1 Forecast Accuracy 

Forecast Accuracy is the level of agreement between the 
forecast and the observation. The difference between the 

forecast and the observation is the error. The lower the errors, 
the greater the accuracy. The continuous rank probability score 
(CRPS) metric quantifies the difference between a forecast 
distribution and observation as follows (Hersbach,2000); 

CRPS=
1

N
× ∑ ∫ [Fi(y)-Hi{y≥y

0
}]

2∞

-∞

N
i=1 dy            (1) 

         

where Fi  is the cumulative distribution function (cdf) of the 
forecast of the year i, y is the forecast variable (here discharge) 
and y0 is the corresponding observed value. Hi{y≥y

0
} is the 

Heaviside step function that equals to 1 when the forecast values 
are greater than the observed values and equal to 0 otherwise. 
The CRPS summarizes the reliability, sharpness and bias 
attributes of the forecast. The perfect forecast, i.e. a point 
forecast that matches the actual value of the predicted quantity, 
has CRPS=0. 

Linear error in probability (LEPS) measures the error in 
probability space as opposed to measurement space, where 
CDF0(Fi)  and CDF0(Oi) are cumulative distribution 
function of forecasts and observations (Zhang & Casey, 2000). The 
range of LEPS is between 0 and 1 and the perfect score is 0.  

LEPS= 
1

N
∑ |CDF0(Fi)-CDF0(Oi)|N

i=1          (2) 

3.2 Forecast Reliability 

Forecast reliability is related to the correspondence between 
the distribution of forecasts and the distribution of observations. 
It is critically important so that water managers can confidently 
eliminate least plausible options in their water allocation and 
delivery planning which invariably involves extensive scenario 
analysis [4]. The reliability diagram, also called the attribute 
diagram, plots the observed frequency against the forecast 
probability. This can show how well their observed frequencies 
match to the expected event probabilities [5]. Reliability is 
indicated by the proximity of the plotted curve to the diagonal. 
The deviation from the diagonal gives the conditional bias. If the 
curve lies below the line, this indicates over forecasting and 
points lying above the line indicate under forecasting. 

In statistics, the Kolmogorov-Smirnov (KS) test is a non-
parametric test of the equality of continuous, one dimensional 
probability distributions that can be used to compare a sample 
with a reference probability distribution (one sample KS test) or 
to compare two samples KS test. The p value from KS test is 
used to categorize the reliability rating which is derived form p 
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value obtained form KS test at significance thresholds varying 
from 1% to 10%. A p value greater than 10 % implies a strong 
degree of confidence in forecast reliability, while a p value less 
than 1% implies a poor probability of accurate forecast 
distributions [2]. Also, Kolmogorov’s D statistics enables to test 
whether the empirical distribution of data is different than a 
reference distribution.  

3.3 Forecast Sharpness 

The sharpness of forecasts is evaluated using the ratio of 
inter-quantile ranges (IQRs) of discharge forecasts and a historical 
reference. The following definition is used. 

IQR
q
=

1

N
∑

Fi(100-q)-Fi(q)

Ci(100-q)-Ci(q)
×100%N

i=1                 (3) 

where IQR
q
 is the IQR value corresponding to percentiles q, 

Fi(q)  and Ci(q)  are respectively the qth percentiles of 
forecast and the historical reference for year i. An IQR

q
 of 

100% indicates a forecast with the same sharpness as the 
reference, an IQR

q
 below 100% indicates forecasts that are 

sharper than the reference, and an IQR above 100% indicates 
forecasts that are less sharp than the reference (Woldemeskel et 
al., 2018). In this study, IQR

99
 ; the IQR at the 99th percentile 

is used in order to detect forecasts with unreasonably long tails 
in their predictive distributions. 

3.4 Commonly used performance metrics 

Standard verification methods are also used in this study to 
evaluate the forecast performance. 

   3.4.1 Mean Error 
Mean Error can give the average forecast error. The range is 

between - to  and the perfect score is zero. 

Mean Error=
1

N
∑ (Fi-Oi)

n
i=1      (4) 

whereas, N = number of samples, Fi = forecast discharge,  
      Oi = observed discharge.       

   3.4.2 Bias 
  Bias is the correspondence between the mean forecast and 
mean observations. 

BIAS=

1

N
∑ Fi

N
i=1

1

N
∑ Oi

N
i=1

                               (5) 

    
 

   3.4.3 Mean Absolute Error (MAE) 
MAE is the average magnitude of the forecast errors. The 

range is from 0 to  and the perfect score is 0.  

MAE=
1

N
∑ |Fi-Oi|

N
i=1                             (6)       

   3.4.4 Root Mean Square Error (RMSE) 
RMSE is error computed from summation of mean square of 

observed and computed values. It can be considered as average 
value of error.                           

RMSE=√
1

N
∑ (Fi-Oi)

2N
i=1                         (7)        

   3.4.5 Nash Sutcliffe efficiency coefficient (NSE) 
NSE is frequently used to quantify the accuracy of 

hydrological predictions. It can answer a question as to how well 
the forecast predicts the observed time series. The range is 

between - and 1 and the perfect score is 1. 

NSE=
∑ (Fi-Oi)

2n
i=1

∑ (Oi-O̅)
2n

i=1

                               (8)   

   3.4.6 Coefficient of determination (R2) 
   The coefficient of determination (R2) is a measure that 
assesses the ability of a model to predict or explain an outcome 
in the linear regression setting. 

R2=
∑ [(xi-x̅)(yi-y̅)]

2n
i=1

∑ (xi-x̅)2n
i=1 ∑ (yi-y̅)

2n
i=1

                            (9)                        

where xi and y
i
 are observed and forecasted data and x̅ 

and y̅ are averaged data of them. 

   3.4.7 Pearson correlation coefficient (r) 
The Pearson coefficient is a type of correlation coefficient 

that represents the relationship between two variables that are 
measured on the same interval or ratio scale. The Pearson 
coefficient is a measure of the strength of the association 
between two continuous variables. 

r= 
∑ (xi-x̅)(yi-y̅)

n
i=1

√∑ (xi-x̅)
2n

i=1   √∑ (yi-y̅)
2n

i=1

         (10) 

where xi and y
i
 are observed and forecasted data and x̅ 

and y̅ are averaged data of them. 

4. Results and Discussion 

4.1 Fitting probability distribution 
Before analyzing the data, it is necessary to adjust the 

probability distributions to the observed and the forecasted 
(simulated) discharge. This study used three types of goodness 
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of fit tests, such as the Kolmogorov- statistics, the Crkamer- 
Mises statistics and the Anderson- statistics. The best probability  
distribution is then chosen for both datasets at each key station. 
For example, the statistics at Y.14 station (Yom River), are shown 
in the following tables. Weibull distribution is the best fit for Y.14 
station, and the parameters of shape and scale are determined 
according to the test. After that, the cumulative distribution 
functions are calculated using those parameters. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Histogram and theoretical densities at Y.14 station (simulated). 

Fig.3 Q-Q plot at Y.14 station (simulated). 
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Fig.4 Empirical and theoretical CDFs at Y.14 station (simulated). 

Fig.5 P-P plot at Y.14 station (simulated). 
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Table 2 Statistics Result for Simulated Discharge at Y.14 Station. 
Goodness-

of-fit 
statistics 

Wei 
bull 

Log 
normal 

Gamma Log 
logistics 

GEV Logistics Burr Frechet 

Kolmogoro
v-Smirnov 
statistic 

0.087 0.054 0.103 0.048 0.395 0.209 0.380 0.109 

Cramer-von 
Mises 

statistic  
0.741 0.204 1.057 0.204 23.69 4.159 24.84 1.664 

Anderson-
Darling 
statistic 

4.621 1.154 5.783 1.439 112.8 30.491 120.7 11.314 

Table 3 Statistics Result for Observed Discharge at Y.14 Station. 
Goodness-

of-fit 
statistics 

Wei 
bull 

Log 
normal 

Gamma Log 
logistics 

GEV Logistics Burr Frechet 

Kolmogoro
v-Smirnov 
statistic 

0.081 0.134 0.090 0.123 0.386 0.220 0.347 0.152 

Cramer-von 
Mises 

statistic  
0.842 1.134 0.993 1.304 21.53 3.994 17.91 3.006 

Anderson-
Darling 
statistic 

5.363 6.939 6.244 6.244 106.5 29.379 89.29 22.343 

4.2   Continuous ranked probability score and Linear 
error in probability score 
Both scores are within the range between 0 and 0.5 at all 

main stations so forecast accuracy is decent and appropriate. 
LEPS and CRPS scores for all key stations are shown in the 
following figures. 

 
Fig. 6 Linear error in probability score  

 
Fig. 7 Continuous ranked probability score 

4.3  Forecast reliability test results 
Reliability of forecasts is evaluated in key stations using 

reliability plots and KS tests. Reliability plots represent the curve 
that can say the observed frequency for a certain probability, 
and KS test D statistics show the difference between the 
predicted and observed discharge empirical cumulative 
dispersion functions. P values from KS test may also provide the 
response that the data is or is not reliable. For example, the P  
value for P.67 station is 0.053 so that the forecast is considered 
to be reliable since the P value is rated as reliable by more than 
or equal to 5 percent. The figure 8 and 9 show the reliability 
plots and KS test diagram at P.67 station. 

4.4 Forecast Sharpness test results 
  The Interquartile Ranges (IQRs) for all main Chao Phraya Basin 
stations are calculated for forecast sharpness. The forecast is 
less sharp than the observed discharge for P.7A, P.67, N.67, and 
W.1C stations have predictions sharper than the comparison 
observed. The forecasts of remaining Stations are as accurate as 
those of reference. The results can be seen clearly in the bar 
chart below. 

 
 

Fig. 10 Inter quantile ranges (IQRs) for key stations 
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4.5 Standard verification results 
  The MAE and RMSE values for S.4B, P.67, W.1C, Y.14 and 

Y.17 are lower than others. Although the remaining stations have 
high values, they are also appropriate since the values of RMSE 
and MAE are considered to be less than half the standard 
deviation of measured results, and therefore either is suitable 
for model evaluation. The result of NSE, R2 and r shows that 
most stations are almost 1 and therefore well-connected with 
the observed and predicted discharges. 

 

There are some reasons of using these standard verification 
metrics. MAE and RMSE measures average error, weighted 
according to the square of the error. It does not indicate the 
direction of deviations. The RMSE puts greater influence on large 
errors than small errors, which may be a good thing if large errors 
are especially undesirable, but also encourage conservative 
forecasting. NSE and R2 are frequently used to quantify the 
accuracy if hydrological predictions, whereas correlation 
coefficient measures how do the points of a scatter plot are to 

Over forecasting 

Under forecasting Curve tells what the observed 
frequency was for a given 
forecast probability 

Fig.8 Reliability plot at P.67 station  

D = 0.110, if D = 0, two samples 
were drawn from the same distribution 

Fig.9 KS test at P67 station. 
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a straight line and it does not take forecast bias into account. 
Therefore, all of kinds of parameters are need to be considered 
in evaluating the performance of forecasts. 

 
Fig. 11 MAE and RMSE values for all key stations 

 

 
Fig. 12 Correlation coefficients for all key stations 

Table 4 Nash Sutcliffe efficiency coefficient (NSE) for key 
stations 

NSE ranges Station Names Number 
of 

stations 

Remarks 

0.9 <NSE <1 
P.67, P.1, W.1C, 
Y.14, Y.17, S.4B 

6 Very good model 
performance 

0.8 <NSE <0.9 
P.7A, N.60, N.67 3 Good model 

performance 

Table 5 Coefficient of determination (R2) for key stations 
R2 ranges Station Names Number 

of stations 
Remarks 

0.9 < R2 < 1 
P.67, P.1, W.1C, 

Y.14, Y.17 
5 

Very Strong 
Correlation 

0.8 < R2 <0.9 S.4B 1 
Strong 

Correlation 

0.6 < R2 < 0.8 P.7A, N.60, N.67 3 
Moderate 

Correlation 

 

Table 6 Pearson correlation coefficient (r) for key stations 
R ranges Station Names Number 

of stations 
Remarks 

0.9 < r < 1 
P.67, P.1, W.1C, 
Y.14, Y.17, S.4B 

6 Very good 
correlation 

0.8 < r < 0.9 
P.7A, N.60, N.67 3 Good 

correlation 

4.6 Taylor diagram 

   Taylor diagrams [3] provide a way of graphically 
summarizing how closely a pattern matches observations. The 
similarity between two patterns is quantified in terms of their 
correlation, their centered root means square difference and the 
amplitude of their variations. Figure 13 is a Taylor diagram which 
shows how it can be used to summarize the relative skill. 
Statistics for key stations were computed and colored dots were 
assigned to each station considered. The position of each dot 
appearing on the plot quantifies how closely that station’s 
forecast pattern matches observations. Consider station P.7A, 
the green dot, for example. It’s pattern correlation with 
observations is about 0.8. The two contours lie with label 100 
and 200 indicate the RMS values and it can be seen that in the 
case of station P7A, the centered RMS error is about 100 m3/sec. 
The standard deviation of the simulated pattern is proportional 
to the radial distance from the origin. For station P.7A, the 
standard deviation of the simulated field (about 129 m3/sec) is 
clearly greater than the observed standard deviation (110 
m3/sec). 
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5. Conclusions 
This study focused on evaluating the performance forecast 

of the operational flood forecasting service in the Chao Phraya 
River Basin. For water managers and decision makers to use 
these predictions, it should be accurate and have a better 
sharpness than climatology. We investigated streamflow 
forecasts evaluating schemes based on verification metrics 
employing CRPS and LEPS for forecast accuracy, KS test and 
attribute diagram for forecast reliability, IQRs for forecast 
sharpness and other standard verification methods for forecasts 
of continuous variables, namely MAE, BIAS, RMSE, R2, NSE and r. 
The analytical findings are obtained as follows. 

1. Continuous ranking probability scores and linear error 
in the probability scores of most stations are closer to 
zero so that the key stations are in high accuracy. 

2. There are three stations (N.67, P.67, W.1C) that have 
forecasts sharper than the reference so that they can 
be assumed as the best stations in terms of sharpness. 

3. The p values can show the reliability of the data 
according to the KS test. Out of 9 stations, 4 stations 
have a p value of more than 5 percent, making them      
highly reliable. 2 stations are moderately reliable and  
the remaining stations are unlikely to have a reliable 
forecast. 

4. When considering MAE and RMSE together, only two 
stations have values greater than half the standard 
deviation and the remaining stations can be 
considered to be appropriate for model evaluation. 

5. The NSE, R2 and r values can show the correlation 
between forecasts and observations. Five stations fall 
in the range above 0.8 and four stations fall in the 
range under 0.8. Overall, it can be seen that there is a 
strong correlation between forecasts and observed 
discharge at all stations. 

6. The Taylor diagram shows that most stations have 
Root Mean Square (RMS) errors below 100 m3/s and 
fall within a range of correlations from 0.8 to 0.99. The 
simulated patterns of the stations Y.14, N.60 and P.1 
are in good agreement with the observations. These 
stations have relatively high correlation and low RMS 
errors. 

After taking all the verification metrics into account, two stations 
in Ping River (P.67, P.1) and one station in Wang River (W.1C) are 
the best stations in forecasting flood. The rest of the stations do 
more or less well in each verification test. In this study, many 
kinds of verification metrics are used to evaluate the forecasts 
because each method has characteristics that reflect forecast 
behavior. Those results are necessary for decision making for 
earlier flood alerts, when the weighting of different components 

Fig.13 Taylor Diagram 
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of the flood forecasting system need to be optimized. Therefore, 
it can be concluded that HII flood forecast service in Chao 
Phraya River Basin performs very well in terms of forecast 
reliability, sharpness and accuracy. 
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